
Probabilistic Machine Learning Notes

Tony Ruikang OuYang

Department of Engineering, University of Cambridge

ro352@cam.ac.uk

This note contains part of classical models in probabilistic machine
learning, where most of the contents are from Pattern Recognition
and Machine Learning and lectures in Cambridge MLMI 23-24.

It might not be that friendly for ML beginners. A preliminary
of basic machine learning knowledge, e.g. linear regression, logistic
regression, Bayesian inference, MLE and MAP, etc., is
recommended. And I apologize that possible typos might occur in
this note, and I will fix them smoothly as long as I have time to do
so.

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Contents

1 Preliminary 3
1.1 Beta Distribution . 3
1.2 Dirichlet Distribution . 4
1.3 Gaussian Distribution . 4
1.4 Periodic Variables . 5
1.5 Laplacian Approximation . 6

2 Linear models for Regression 7
2.1 Intro . 7
2.2 regularization . 7
2.3 Bayesian view for Ridge Regression 8

3 Linear models for Classification 9
3.1 Intro . 9

3.1.1 Discriminant models . 9
3.1.2 Generative models . 10

3.2 Fisher’s Discriminant model . 10
3.3 Logistic and it’s variants . 11

3.3.1 logistic . 11
3.3.2 IRLS . 11
3.3.3 Multiclass logistic . 11
3.3.4 Probit Reg . 11
3.3.5 Bayesian logistic Reg . 12

4 Kernel methods 13
4.1 Intro . 13
4.2 Example of kernels . 15
4.3 Kernel constructions . 16
4.4 Kernel Regression: Nadaraya-Watson Model 16
4.5 Representing Probability Distributions with Features 16

5 Gaussian Process 17
5.1 GP Regression . 17

5.1.1 GP vs linear regression 19
5.2 GP Classification . 19

5.2.1 General case . 19
5.2.2 Example - Binary case . 20

5.3 Large-Scale Kernel Approximation 20

1

CONTENTS 2

5.3.1 Low Rank Matrix Approximation 21
5.3.2 Random Fourier Features 21

6 Sparse Kernel Machines 22
6.1 Support Vector Machine . 22

6.1.1 Duality in Convex Optimization 22
6.1.2 SVM for classification . 24
6.1.3 SVM for regression . 26

6.2 Relevance Vector Machines . 28
6.2.1 RVM for Reg . 28
6.2.2 RVM for clf . 29

7 Graphical Models 30
7.1 Bayesian Network . 30

7.1.1 Intro . 30
7.1.2 Sample from graph . 30
7.1.3 Num of params, example of discrete variables 31
7.1.4 Linear Gaussian Models 31

7.2 Conditional Independence . 31
7.3 Markov Random Field . 31
7.4 Inference in Graphical Models . 32

7.4.1 Inference on a chain . 32
7.5 Inference on Factor Graph . 32

8 EM 35
8.1 EM algorithm . 35

8.1.1 EM in an optimization viewpoint 35
8.1.2 EM in KL-divergence viewpoint 36
8.1.3 Convergence of EM . 37
8.1.4 EM for Bayesian . 37

8.2 EM examples . 37
8.2.1 K-means algorithm . 37
8.2.2 Mixture Gaussians . 38
8.2.3 Mixture Bernoulli . 38
8.2.4 Bayesian Linear Reg . 39

Chapter 1

Preliminary

1.1 Beta Distribution

Let’s begin with the simple binary distribution,

P (x = 1) = µ, P (x = 0) = 1− µ (1.1.1)

then,

P (x) = µ1−x(1− µ)1−x (1.1.2)

In Bayesian settings, given a binary likelihood, we’re going to compute the
posterior as follows:

P (µ|x) = P (x|m)P (µ)

p(x)
∝ P (x|m)P (µ) (1.1.3)

For convenience, we construct a conjugate prior P (µ) with form:

P (µ) ∝ µa(1− µ)b (1.1.4)

Then, we construct the following proir, which is a conjugacy of binary dist.,
called Beta Dist.:

Beta(µ|a, b) = τ(a+ b)

τ(a)τ(b)
µa−1(1− µ)b−1 (1.1.5)

with γ(x) =

∫ ∞

0

ux−1e−udu (1.1.6)

It’s easy to check that:

E[Beta(µ|a, b)] = a

a+ b
(1.1.7)

V ar(Beta(µ|a, b)) = ab

(a+ b)2(a+ b+ 1)
(1.1.8)

3

CHAPTER 1. PRELIMINARY 4

1.2 Dirichlet Distribution

It’s natural to extend the binary dist. to the multinomial case, e.g. there are K
clusters in a dataset (K ≥ 2). Let’s say x ∈ 0, 1K and

∑
k xk = 1, then,

P (x|µ) = ΠK
k=1µ

xk

k (1.2.1)

In N observations, we observe Mk datapoints lie in the kth cluster, then a
multinomial distribution is described as follow:

Mult(m1, ...,mk|N,µ) =
N !

m1!...mk!ΠK
k=1µ

xk

k

(1.2.2)

The same as before, to construct a conjugate prior for multinomial dist., we
assume the prior has the following form:

P (µ) ∝ ΠK
k=1µ

αk−1
k (1.2.3)

s.t.0 ≤ µk ≤ 1,
∑
k

µk = 1 (1.2.4)

Then we obtain the prior by normalization, which is called Dirichelet distribu-
tion:

Dir(µ|α1, ..., αK) =
τ(α0)

τ(α1)...τ(αK)
ΠK

k=1µ
αk−1
k (1.2.5)

with α0 =
∑
k

αk (1.2.6)

Thus, posterior:

P (µ|x, α) ∝ P (x|µ)P (µ|α) (1.2.7)

∝ ΠK
k=1µ

αk+mk−1
k (1.2.8)

−→ P (µ|x, α) = Dir(µ|α+m) (1.2.9)

1.3 Gaussian Distribution

Definition 1.3.1 (Gaussian).

N(x|µ, σ) = 1

(2π)
n
2 |Σ|

exp(−1

2
)(x− µ)TΣ−1(x− µ)

Theorem 1.3.1. Given p(Y—X) and p(X), then

E[Y] = EXEY [Y |X] (1.3.1)

V ar(Y) = EX [V ar(Y |X)] + V arX(E[Y |X]) (1.3.2)

Proof.

1. E[Y] is easily derived by towel theorom.

CHAPTER 1. PRELIMINARY 5

2.

V ar(Y) = E[(Y −E[Y])(Y −E[Y])T]

= E[(Y −E[Y] +EX [Y |X]−EXE[Y |X])

(Y −E[Y] +EX [Y |X]−EXE[Y |X])T]

= EX [EY |X [(Y −E[Y |X])(Y −E[Y |X])T

+ (E[Y |X]−E[Y])(E[Y |X]−E[Y])T

+ 2(Y −E[Y |X])(E[Y |X]−E[Y])T]]

= EX [V ar(Y |X)]+

EX [(E[Y |X]−E[E[Y |X]])(E[Y |X]−E[E[Y |X]])T]

= EX [V ar(Y |X)] + V arX(EY[Y|X])

Theorem 1.3.2 (Gaussian marginal and conditions). Given, p(x) = N(x|µ,Λ−1)
and p(y|x) = N(y|Ax+ b, L−1), then,

p(y) = N(x|Aµ+ b, L−1 +AΛ−1AT)

p(x|y) = N(y|Σ(ATL(y − b) + Λµ),Σ)

where Σ = (Λ +ATLA)−1

Proof.

1. It is clear that y is Gaussian, then by theorem1.3.1:

E[y] = EY EX [y|x] = Aµ+ b

V ar[y] = EX [L−1] + V arX(Ax+ b)

= L−1 +E[A(x− µ)(x− µ)TAT]

= L−1 +AΛ−1AT

2.

p(x|y) ∝ N(y|Ax+ b, L−1)N(x|µ,Λ−1)

∝ exp((y −Ax− b)TL(y −Ax− b) + (x− µ)TΛ(x− µ))

∝ exp(xT (ALA+ Λ)x+ 2(bTLA− yTLA− µTΛ)x)

∝ exp((x−m)TΣ−1(x−m))

with m = Σ(ATL(y − b) + Λµ) and Σ = (Λ +ATLA)−1

1.4 Periodic Variables

Consider an univariate θ, s.t.

P (θ) ≥ 0 (1.4.1)∫ 2π

0

P (θ)dθ = 1 (1.4.2)

P (θ + 2π) = P (θ) (1.4.3)

CHAPTER 1. PRELIMINARY 6

Suppose θ0 is an origin, with radius r0. We’re going to construct the prob.
P by transforming the probability distribution from Cartesian coordinates to
Polar coordinates.

Consider a 2-D gaussian with mean (µ1, µ2), 0 covariance and same variance
σ2, i.e.

P (x1, x2) =
1

2πσ
exp(− (x1 − µ1)

2 − (x2 − µ2)
2

2σ2
) (1.4.4)

Then, with (x1, x2) = (r cos θ, r sin θ) and (µ1, µ2) = (r0 cos θ0, r0 sin θ0), it’s
easy to compute that,

P (θ) ∝ P (x1, x2) =
1

2πσ
exp(

r0
r
cos(θ − θ0) + const) (1.4.5)

Then, we obtain the von-Mises distribution as follow,

P (θ|θ0,m) =
1

2πI0(m)
exp{mcos(θ − θ0)} (1.4.6)

where I0(m) =
1

2m

∫ 2π

0

exp(m cos θ)dθ, is the Bessel Function (1.4.7)

1.5 Laplacian Approximation

Given a density p(z), our goal is to find a gaussian q(z), such that q(z) is an
approximation of p(z). In other words, we want to find:

p(z) ≃ q(z) = c exp(−A(z − z0)

2
) (1.5.1)

⇐⇒ lnp(z) ≃ const− A(z − z0)

2
(1.5.2)

It’s easy to notice that, finding the const and A is equivalent to figure out
the 2nd order Taylor expansion of p(z) at z0, where p

′(z0) = 0. And thus,

lnp(z) ≃ lnp(z0) +
lnp′′(z0)

2
(z − z0)

2 (1.5.3)

=⇒ A = − d2

dz2
p(z)|z=z0 (1.5.4)

Thus,

q(z) = N(z; z0, A
−1) ≃ p(z) (1.5.5)

with
d

dz
lnp(z)|z=z0 = 0 and A = − d2

dz2
lnp(z)|z=z0

Chapter 2

Linear models for
Regression

2.1 Intro

Given D = (xn, yn)
N
n=1, we expecty = ωTϕ(x), where ω is learnable param and

ϕ is called basis function.

1. Decision-making perspective - Least Square:

min
ω

1

N

N∑
n=1

(ωTϕ(xn)− yn)
2

2. Statistical perspective - MLE:

suppose y = ωTϕ(x) + ϵ, ϵ ∼ N(0, σ2)]

−→ max
ω

P (D|ω) = N(ωTϕ(x), σ2)

Then,

ω = (ΦTΦ)−1ΦT y

with Φ = [ϕ(x1), ..., ϕ(xN)]T

2.2 regularization{
1. Optim - lagrange: min

ω
L(ω) + λ∥ω∥

2. Stats - bayesian reg: with a prior, maximize a posterior

−→

{
1. L1: sparse solution, laplacian prior

2. L2: gaussian proir

−→ ω = (λI +ΦTΦ)−1ΦT y (2.2.1)

7

CHAPTER 2. LINEAR MODELS FOR REGRESSION 8

2.3 Bayesian view for Ridge Regression

In Bayesian view, we suppose the responses are given by f(x) = ωTϕ(x) + ϵ,
where ϵ ∼ N(0, σ2) and prior ω ∼ N(0, α−1I). Then, we have p(y|x, ω, β) =
N(y|ωTϕ(x), β−1. Thus, the posterior is given by:

p(ω|D,α, β) = ΠN
n=1p(yn|xn, ω, β)p(ω|α)

= N(y|Φω, β−1I)N(ω|, 0, α−1I))

∝ exp{1
2
(β(y − Φω)T (y − Φω)− 2βωTΦy + αωTω)}

= exp{1
2
(ωT (βΦTΦ+ αI)− 2βωTΦy)}

∝ exp{1
2
(ω −m)TΣ−1(ω −m)} (2.3.1)

Thus,

p(ω|D,α, β) = N(ω|m,Σ) (2.3.2)

where Σ = (βΦTΦ+ αI)−1 and m = ΣΦy

.
Therefore, ω is optimized by maximizing a posterior(MAP), which is equiv-

alent to ridge regression.
Besides, the hyperparams α and β could be optimized by maximizing the evi-

dence p(D|α, β) =
∫
p(D|ω, β)p(ω, α)dω, which is easy as p(D|α, β) = N(y|0, β−1I+

α−1ΦΦT)(by Gaussian margins).
Choosing the optimal hyperparams α∗ and β∗, then the prediction of a new

input is:

p(y′|x′, D,∗ , β∗) =

∫
p(y′|x′, ω, β∗)p(ω|D,α∗, β∗)dω

=

∫
N(y′|ωTϕ(x′), β∗−1I)N(ω|m,Σ)dω

= N(y′|mTϕ(x′), β∗−1 + ϕ(x′)TΣϕ(x′)) (2.3.3)

Chapter 3

Linear models for
Classification

3.1 Intro

In classification settings, generally, there are two types of models: discriminant
model and generative model.

3.1.1 Discriminant models

Given a dataset, we’re going to find a hyperplane to classify the data. In statis-
tics view, we’re finding distributions P (x ∈ Ck|x, ω). Generally, we would like
to use the following form to model the probs:

P (x ∈ Ck|x, ω) = f(ωT
k x) (3.1.1)

where f is called link function or activation function.
Then, the likelihood is

P (D|ω) = ΠN
n=1Π

K
k=1P

Ink

nk (3.1.2)

where, Pnk = f(ωT
k xn) and Ink = 1 if xn ∈ Ck ; else 0 (3.1.3)

We fit ω by MLE, which is equivalent to

min
ω1,...,ωK

E(ω) := −
∑
n

∑
k

InklogPnk (3.1.4)

∇ωjE(ω) = −
∑
n

Inj
Pnj

f ′(ωT
j xn)xn (3.1.5)

And we update the params by:

ωt+1
j = ωt

j − α∇ωj
E(ω) (3.1.6)

The former objective function is also called Cross Entropy, with a more popular
2-D case (binary classification) as following:

E(ω) = −
∑
n

{(1− yn)logpn + ynlog(1− pn)} (3.1.7)

9

CHAPTER 3. LINEAR MODELS FOR CLASSIFICATION 10

3.1.2 Generative models

Different from discriminant ones, generative models are modeling the data by
fitting P (x|Ck, ω).

As,

P (x ∈ Ck|x, ω) =
P (x|Ck, ω)P (Ck)

P (x|ω)
(3.1.8)

we’re going to model P (x|Ck, ω) and assign a prior for Ck, instead of model-
ing P (x ∈ Ck|x, ω) itself. For example, we could use Gaussians to model the
generative process, i.e. P (x|Ck, ω) = N(x;µk,

∑
k), and params are fitted by

maximizing the likelihood as well.

3.2 Fisher’s Discriminant model

Main idea: min within-class deviations and max between-class deviations.
For 2 classes case(C1, C2), given D = (xn, yn), define,

m̃k :=
1

Nk

∑
n∈Ck

xn, k = 1, 2 (3.2.1)

mk := ωT m̃k ∈ R (3.2.2)

Sk :=
1

Nk

∑
n∈Ck

(yn −mn)
2 (3.2.3)

Then,

max
ω

J(ω) : =
(m1 −m2)

2

S1 + S2
(3.2.4)

=
ωT (m̃1 − m̃2)(m̃1 − m̃2)

Tω

ωT [
∑

k
1
Nk

∑
n∈Ck

(xn − m̃k)(xn − m̃k)T]ω
(3.2.5)

: =
ωTSBω

ωTSWω
(3.2.6)

Let J(ω) = 0, then:

ωTSBωSWω = ωTSWωSBω (3.2.7)

and notice that ωTSBω and ωTSWω are scalars, then we have

ω ∝ S−1
W SBω ∝ S−1

W (m̃1 − m̃2) (3.2.8)

And finally, we could assign xnew ∈ C1 if ωTxnew ≥ y0, where y0 could be
modeled by a gaussian.

CHAPTER 3. LINEAR MODELS FOR CLASSIFICATION 11

3.3 Logistic and it’s variants

3.3.1 logistic

For 2-classes case, following the settings in 3.1.1, we select the sigmoid function
as activation. By 3.1.5 and σ′(x) = σ(x)(1− σ(x)),

∇E(ω) = −
∑
n

(yn − σ(ωTxn))xn (3.3.1)

Then, ω is estimated by gradient descent.

3.3.2 IRLS

To accelerate the training process for any 3.1.1 like model, we would like to
use a 2nd order optimization algorithm, i.e. Newton-Raphson, which solves the

fixed point problem f(x) = x by an iterative algorithm xnew = xold− f ′

f ′′ |x=xold .
Thus, we first compute the Hessian matrix for each param ωj :

H(ωj) = ∇∇ωj
E(ω) (3.3.2)

= −∇
∑
n

Inj
Pnj

f ′(ωT
j xn)xn (3.3.3)

= −
∑
n

Inj
P 2
nj

{f ′′(ωT
j xn)Pnj − (f ′(ωT

j xn))
2}xnxTn (3.3.4)

Then, each param is updated by:

ωt+1
j = ωt

j −H(ωj)
−1∇ωjE(ω)|ω=ωt (3.3.5)

3.3.3 Multiclass logistic

Instead of simple sigmoid activation, we use softmax as the activation function
when dealing with multiclasses, which is:

P (x ∈ Ck|x, ω) =
exp(ak)∑
j exp(aj)

(3.3.6)

where, ak = σ(ωT
k x) (3.3.7)

According to 3.1.1, it’s easy to derive that:

∇ωj
E(ω) = −

∑
n

(tnj − Pnj)xn (3.3.8)

∇ωk
∇ωj

E(ω) = −
∑
n

Pnk(Ikj − Pnj)xnx
T
n (3.3.9)

3.3.4 Probit Reg

In logistic settings, we use sigmoid or softmax as activations, which might en-
counter some issues when outliers arising. In details, when the input x lies on
the tails, i.e. x lim+∞, the prob would be close to 1 with exponential speed,

CHAPTER 3. LINEAR MODELS FOR CLASSIFICATION 12

which might effect the training process a lot if the label is incorrect. Thus, we
use an alternative activation as follows.

In a 2-classes case, We would like to find a threshold, such that y = 0 if
a ≥ θ. Thus, given the density of θ, say, p(θ), P (y = 1) =

∫ a

−∞ p(θ)dθ.
Indeed, let p(θ) be a standard gaussian, then

P (y = 1|x, ω) =
∫ σ(ωT x)

−∞
N(θ; 0, 1)dθ (3.3.10)

=

∫ σ(ωT x)

−∞

1√
2π
exp(−θ

2

2
)dθ (3.3.11)

= Φ(σ(ωTx)) (3.3.12)

Solving this by GD...

3.3.5 Bayesian logistic Reg

In addition to simple logistic, we adopt the Bayesian framework. By 3.1.2 and
given prior P (ω), we compute the posterior as follow:

P (ω|D) =
1

Z
P (D|ω)P (ω) (3.3.13)

Then, we estimate ω by MAP:

ωMAP = argmin
ω
P (ω|D) (3.3.14)

= argmin
ω
logP (D|ω) + logP (ω) (3.3.15)

Then, ωMAP could be easily computed by any optimization algorithm, e.g. GD.
However, the posterior is intractable, as computing the factor Z =

∫
ω
P (D|ω)P (ω)dω

is hard, or even impossible.
To make the posterior tractable, we approximate it using Gaussian, i.e.

Laplacian Approximation. We first choice the prior as P (ω) = N(ω;m0, S0).
Then, apply Laplacian Approximation using 1.5.5. Since ωMAP is a maximum
of posterior, then ∇P (ω|D)|ω=ωMAP = 0. Then,

A = −∇∇logP (ω|D) = S−1
0 −∇∇P (D|ω) (3.3.16)

And we approximate the posterior as P (ω|D) ≃ N(ω;ωMAP , A−1)
e.g. for 2-classes case, A = S−1

0 +
∑

n Pn(1− Pn)xnx
T
n

Chapter 4

Kernel methods

4.1 Intro

To include more nonlinearity into our models, either regression or classification,
we’re going to introduce the concept of ”kernel” in this section.

Beforing giving the definition of kernel, we first review the following concepts:

Definition 4.1.1 (Metric). a function D is called a metric on X, if ∀x, y, z ∈
X, it satisfies that:

• D(x, x) = 0

• positivity: D(x, y) ≥ 0

• symmetry: D(x, y) = D = (y, x)

• triangle inequality: D(x, z) < D(x, y) +D(y, z)

Definition 4.1.2 (Metric Space). A space, e.g. of X, equipped with a met-
ric/norm, e.g. a distance function d, i.e. (X, d)

Definition 4.1.3 (Inner Product). < x, y >=
√
D(x, y),∀x, y ∈ X

Definition 4.1.4 (Inner Product Space). A metric space, whose metric/norm
is defined by an inner product < ·, · >, i.e. (X,

√
< ·, · >)

Definition 4.1.5 (Complete Space). A metric space X, where for each x ∈ X,
exists a sequence {xn}∞n=1, such that limn−→∞ xn = x.

Definition 4.1.6 (Hilbert Space). A complete Inner Product Space correspond-
ing to the norm given by

√
< ·, · >H, noted as H(X , ∥ · ∥)

Follow the previous reviews, a kernel is defined as follows:

Definition 4.1.7 (Kernel). A function k : X × X → R is called a kernel, if
there exits a Hilbert Space H and a map ϕ : X → H such that,

∀x, x′ ∈ X, k(x, x′) =< ϕ(x), ϕ(x′) >H

13

CHAPTER 4. KERNEL METHODS 14

Thus, kernel is the inner product on a Hilbert Space, which represents the
inner-product of feature map ϕ.

Then, we’re going to provide that k is a kernel if it is a symmetric and
semi-definite positive function , i.e.

∀x, x′ ∈ X,

{
k(x, x′ = k(x′, x))

k(x, x) ≥ 0

Definition 4.1.8 (Positive semi-definite function). A function f is called pos-
itive semi-definite, if

n∑
i=1

n∑
j=1

αiαjf(xi, xj) ≥ 0,∀n ≥ 1,∀xi, xj ∈ X,∀αi ∈ R (4.1.1)

Lemma 4.1.1. All kernels are positive semidefinite functions.

Proof.

n∑
i=1

n∑
j=1

αiαjk(xi, xj) =

n∑
i=1

n∑
j=1

αiαj < ϕ(xi), ϕ(xj) >Hk

=<

n∑
i=1

αiϕ(xi),

n∑
j=1

αjϕ(xj) >H

= ∥
n∑

i=1

αiϕ(xi)∥2Hk
≥ 0

Definition 4.1.9 (Reproducing Kernel and RKHS). let H be a Hilbert Space
of functions: f : X → R, k : X ×X → R is called a reproducing kernel if:

• ∀x ∈ X, k(·, x) ∈ H

• ∀x ∈ X,∀f ∈ H, < f, k(·, x) >H= f(x)

If H has a reproducing kernel, it is called a Reproducing Kernel Hiltert Space,
RKHS.

Thus, any reproducing kernel is also a valid kernel with the feature map
ϕ : X → k(·, x).

Proof.

k(x, x′) =< k(·, x′), k(·, x) >H=< ϕ(x), ϕ(x′) >H

Theorem 4.1.2 (Moore-Avonszajn). Every positive semidefinite function k :
X ×X → R is also a reproducing kernel with a unique corresponding RKHS.

CHAPTER 4. KERNEL METHODS 15

Theorem 4.1.3 (Representor Theorem). There is always a solution to

f∗ = arg min
f∈Hk

R̂(f) + Ω(∥f∥Hk
) (4.1.2)

that takes the form:

f∗ =

N∑
n=1

ank(·, xn), an ∈ R (4.1.3)

Proof. Suppose f is one of a minimum and fs is the projection of f onto subspace
spank(·, xn), n = 1, ..., N , such that: f = fs + f⊥

=⇒ ∥f∥2Hk
= ∥fs∥2Hk

+ ∥f⊥∥2Hk
≥ ∥fs∥2Hk

=⇒ Ω(∥fs∥2Hk
) ≤ Ω(∥f∥2Hk

)

Besides,

f(xn) =< f, k(·, xn) >Hk
=< fs + f⊥, k(·, xn) >Hk

=< fs, k(·, xn) >Hk
= fs(xn)

=⇒ L(yn, f(xn), xn) = L(yn, fs(xn), xn)

=⇒ R̂(f) = R̂(fs)

Thus, fs is also a minimum.

4.2 Example of kernels

1. Gaussian Kernel:

k(x, x′) = exp{ 1

2σ2
(K̃(x, x) + K̃(x′, x′))− 2K̃(x, x′)}

where K̃ is any other valid kernel and thus the Gaussian Kernel is not
restricted to Euclidean Space.

2. Kernel for sets:
k(A1, A2) = 2|A1∩A2|

3. Kernel for probs:

k(x, x′) =
∑
i

p(x|i)p(x′|i)p(i)

or =

∫
p(x|z)p(x′|z)p(z)dz

4. Fisher Kernel:
Given a generative model p(x|θ), the Fisher score is g(θ, x) := ∇θlogp(x|θ).
Then the kernel is defined as:

k(x, x′) = gT (θ, x)F−1g(θ, x)

where F is the Fisher Information, F = EX [g(θ, x)gT (θ, x)]

CHAPTER 4. KERNEL METHODS 16

5. Sigmoid Kernel: k(x, x′) = tanh(aTxTx′ + b)

6. Matérn Kernels(also called Matérn covariance):

k(x, x′) =
1

Γ(ν)2ν−1
(

√
2ν

l
∥x− x′∥2)νKν(

√
2ν

l
∥x− x′∥2)

where l > 0, Kν is a modified Bessel function and Γ is the gamma function.
And when ν = s+ 1

2 , the corresponding Hilbert Space is a function space
of all s-times differentiable functions. And especially,

(a) ν = 1
2 , k(x, x

′) = exp(− 1
l ∥x− x′∥2)

(b) ν = 3
2 , k(x, x

′) = exp(1 +
√
3
l ∥x− x′∥2)exp(−

√
3
l ∥x− x′∥2)

4.3 Kernel constructions

1. Mapping between Space: k(A(x), A(x′)), with A : X → X̃

2. Sums of kernels:
∑

i ki(x, x
′)

3. Products of kernels: k((x, y), (x′), y′) = kX(x, x′))kY (y, y
′) and moreover

k(x, x′) = k1(x, x
′)k2(x, x

′)

4.4 Kernel Regression: Nadaraya-Watson Model

Let’s model the joint distribution as

p(x, y) =
1

N

N∑
n=1

fθ(x− xn, y − yn) (4.4.1)

where f is a function(some prob density) with param θ, then

E[y|x] =
∫
yp(y|x)dy =

∫
yp(x, y)dy∫
p(x, y)dy

(4.4.2)

=

∑N
n=1

∫
yfθ(x− xn, y − yn)dy∑N

m=1

∫
fθ(x− xm, y − ym)dy

(4.4.3)

Suppose
∫
yf(x, y)dy = 0 and let g(x) :=

∫ +∞
−∞ f(x, y)dy, then

E[y|x] =
∑
n

g(x− xn)∑
m g(x− xm)

yn (4.4.4)

Therefore, the prediction has the form:

E[y|x] =
∑
n

k(x, xn)yn (4.4.5)

where the kernel is k(x, xn) =
g(x−xn)∑
m g(x−xm)

e.g. let fθ = N(o, σ2I)

4.5 Representing Probability Distributions with
Features

Chapter 5

Gaussian Process

In the perspective of Bayesian nonparametric approach, we treat the prediction
function f as the random variable taking values in an infinite-dimension space
of functions, i.e. given prior over functions f ∈ F and compute P (f |D)

By Bayesian,

P (f |D) ∝ P (f)P (D|f) = P (f)Πn
i=1P (yi|f(xi)) (5.0.1)

which means that only require f to be evaluated at data points! And we could
just define a stochastic process on the joint distribution of (f(x1), ...f(xn)) for
all possible inputs.

5.1 GP Regression

Definition 5.1.1 (Gaussian Process). A GP is a stochastic process whose ele-
ments are jointly Gaussian:

f =

f(x1)...
f(xn)

 ∼ N(

m(x1)
...

m(xn)

 ,
k(x1, x1) . . . k(x1, xn)

...
. . .

...
k(xn, x1) . . . k(xn, xn)

) (5.1.1)

where m is the mean function, k is the covariance function, and they are all
deterministic. And since k must be semidefinite positive, it’s a kernel in Hk!

To simplify, consider a zero mean function: f ∼ N(0, k).

• Gaussian marginals and conditions:
Let Z ∼ N(µ,Σ), by blocking:

Z =

[
Z1

Z2

]
, µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]

=⇒p(Z1) = N(Z1;µ1,Σ1)

p(Z2) = N(Z2;µ2,Σ2)

p(Z2|Z1) = N(Z2;µ2 +Σ21Σ
−1
11 (Z1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12)

17

CHAPTER 5. GAUSSIAN PROCESS 18

Suppose yi are independent, let y|f ∼ N(f, σ2I), where y =
[
y1 . . . yn

]T
. Let

(Kxx)ij = k(xi, xj), (Kx′x′)ij = k(x′i, x
′
j) and (Kx′x)ij = k(x′i, xj). Then

f =

f(x1)...
f(xn)

 ∼ N(0,Kxx), f
′ =

f(x
′
1)
...

f(x′n)

 ∼ N(0,Kx′x′)

=⇒
[
f ′

y

]
∼ N(

[
0
0

]
,

[
Kx′x′ Kx′x

Kxx′ Kxx + σ2I

]
)

Proof.

Cov(f ′, y) = Cov(f ′, f + σϵ) with ϵ ∼ N(0, I) (5.1.2)

= E[f ′(f + σϵ)T] (5.1.3)

= E[f ′fT] = Kx′x (5.1.4)

By Gaussian conditions,

f ′|y ∼ N(Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′) (5.1.5)

And it is noticable that the mean term Kx′x(Kxx+σ
2I)−1y is exactly the result

of Kernel Ridge Regression with λ = σ2!
In Bayesian perspective:

1. prior: f ∼ GP (0, k)

2. likelihood: yi|f ∼ N(f(xi), σ
2)

3. posterior: f |y ∼ GP (mpost, kpost), where

mpost(x) = KT
x (x)(Kxx + σ2I)−1y

kpost(x, x
′) = k(x, x′)−KT

x (x
′)(Kxx + σ2I)−1Kx(x

′)

Kx(x) = [k(x, x1), ..., k(x, xn)]
T

For hyperparameter selection, we perform MLE on evidence. e.g. given
θ = (ν, σ2), where ν is a param of kernel kν , then

p(D|θ) =
∫
p(D, f |θ)df

=

∫
p(D|f, θ)p(f |θ)df

=

∫
N(y; f(x), σ2I)N(f ; 0,Kν)df = N(y; 0,Kν + σ2I) (5.1.6)

Thus, we could optimize the params by

max
θ=(ν,σ2)

logP (D|θ) = −1

2
|Kν + σ2I| − 1

2
yT (Kν + σ2I)−1y + const (5.1.7)

CHAPTER 5. GAUSSIAN PROCESS 19

5.1.1 GP vs linear regression

To discover the relationship between Gaussian Process and linear regression, we
have to notice that(from last Chapter), the optimized linear regression model
f(x) = wTϕ(x) is equivalent to:

f(x) =

N∑
n=1

anϕ(xn)
Tϕ(x)

It is easy to extend it to a Kernel linear regression, where a kernel function
is defined as an inner-product of feature map in a Hilbert Space, k(x, x′) =<
ϕ(x), ϕ(x′) >H. And there is no restriction about the feature map, which means
we are going to consider an infinite feature map function, and what we need to
do is just defining a valid kernel.
Thus, a GP is equivalent to a linear regression model with infinite basis func-
tions!
Moreover, GP(0, k) is equivalent to the Kernel Bayesian Regression model with
0 mean prior.
Thus, the performance of a GP(0, k) model is well guaranteed. To improve
its performance, specifying the mean function would be helpful, which might
reduce the variance of the predictions:

Figure 5.1: left: GP(0, k); right: GP(x, k)

Besides, we could specify a parameterised mean function, say mγ , and we
could jointly train the parameters by MLE:

max
θ=(γ,ν,σ2)

logP (D|θ) = −1

2
|Kν+σ

2I|−1

2
(y−mγ(x))

T (Kν+σ
2I)−1(y−mγ(x))+const

(5.1.8)

5.2 GP Classification

5.2.1 General case

To obtain categorical responses. we use link function ψ = [ψ1, ..., ψK]T to trans-
form GP outputs, i.e. p(y = k|f(x)) = ϕk(f(x)). Recep that f ∼ N(f ; 0, k)

CHAPTER 5. GAUSSIAN PROCESS 20

and f ′|f ∼ N(f ′;Kx′xK
−1
xx f,Kx′x′ −Kx′xK

−1
xxKxx′), we aim to compute

p(f ′|D) =

∫
p(f ′, f |D)df

=

∫
p(f ′|f)p(f |D)df (5.2.1)

And
p(f |D) ∝ p(D|f)p(f) = p(f)ΠiΠkψk(f(xi))

1(yi=k) (5.2.2)

To compute p(f |D), we use Laplacian approximation:

ln p(f |D) = ln p(f) +
∑
i

∑
k

1(yi = k) ln psik(f(xi)) + const (5.2.3)

∇ ln p(f |D) = −K−1
xx f +

∑
i

∑
k

1(yi = k)∇ lnψk(f(xi)) (5.2.4)

∇∇ ln p(f |D) = −Kxx +
∑
i

∑
k

1(yi = k)∇∇ lnψk(f(xi)) (5.2.5)

A = −∇∇ ln p(f |D)|f=fMAP (5.2.6)

Then, we use ∇ ln p(f |D) to optimize and find fMAP . And thus

p(f |D) ≃ N(f ; fMAP , A−1) (5.2.7)

Therefore,

p(f ′|D) =

∫
p(f ′|f)p(f |D)df

=

∫
N(f ′;Kx′xK

−1
xx f,Kx′x′ −Kx′xK

−1
xxKxx′)N(f ; fMAP , A−1)

= N(f ′;Kx′xK
−1
xx f

MAP ,Kx′x′ −Kx′xA
−1Kxx′) (5.2.8)

5.2.2 Example - Binary case

For binary responses(-1/+1), we select sigmoid σ as link function, which is
p(y = +1|f(x)) = σ(f(x)). Then following the previous subsection:

ln p(f |D) = ln p(f) +
∑
i

lnσ(yif(xi)) + const (5.2.9)

∇ ln p(f |D) = −K−1
xx f + gf (5.2.10)

(gf)i = σ(−yif(xi))yi (5.2.11)

∇∇ ln p(f |D) = −Kxx −Df (5.2.12)

Df = diag(σ(f) ◦ σ(f)) (5.2.13)

=⇒ p(f ′|y) ≃ N(f ′;Kx′xK
−1
xx f

MAP ,Kx′x′ −Kx′x(Kxx +DfMAP)−1Kxx′)
(5.2.14)

5.3 Large-Scale Kernel Approximation

In GP regression or classification, it is usually expensive to compute the inverse
of a n×n matrix, when the sample goes large. To avoid the O(n3) computation,
scalable methods are necessary.

CHAPTER 5. GAUSSIAN PROCESS 21

5.3.1 Low Rank Matrix Approximation

In GP regression5.1.5, we need to compute (Kxx+σ
2I)−1 which scales to O(n3).

To avoid this, we approximate Kxx with Q ∈ Rn×m,m << n,

Kxx ≃ QQT (5.3.1)

Apply the matrix inversion lemma:

(QQT + σ2I)−1 = σ2I − σ2Q(σ2I +QTQ)−1QT (5.3.2)

And thus, the computation of ?? is O(m3) << O(n3)

5.3.2 Random Fourier Features

Recap that in Ridge Linear Regression, ω = (λI+ΦTΦ)Φy, where Φ = [ϕ(x1), ..., ϕ(xn) ∈
Rn×m]. Therefore, once we figure out the feature mapϕ, the computation of
parameters goes to O(m3). And thus the computation of Kernel Linear Re-
gression is min{O(n3), O(m3)}. And RFF performs a Fourier Transform on the
kernel to approximate the feature map.
For ∀ stationary kernel, i.e. k(x, x′) = κ(x− x′).

Theorem 5.3.1 (Bochner’s theorem). A continuous shift-invariant kernel k(x, y) =
κ(xy) on RP is positive definite if and only if κ(δ) is the Fourier transform of
a non-negative measure.

Given a non-negative measure p(ω)(a prob density), we define the kernel as:

κ(δ) =

∫
p(ω)exp(iωT δ)dω (5.3.3)

= Eω[exp(iω
T δ)] (5.3.4)

To approximate the kernel with dimension m:

k(x, x′) = κ(δ) =
2κ(0)

m

m∑
j=1

cos (ω̂T
j x+ b̂j)cos(ω̂

T
j x

′ + b̂j) (5.3.5)

with b̂j ∼ U(0, 2π) and ω̂j ∼ p(ω)
Thus, we approximate the feature map ϕ as:

ϕ(x) ≃ ϕm(x) =

√
2κ(0)

m
[cos(ω̂T

1 x+ b̂1), ..., cos(ω̂
T
n x+ b̂n)]

T (5.3.6)

k(x, x′) ≃ km(x, x′) = ϕm(x)Tϕm(x′) (5.3.7)

For more details about RFF: https://gregorygundersen.com/blog/2019/1
2/23/random-fourier-features/#a1-gaussian-kernel-derivation

https://gregorygundersen.com/blog/2019/12/23/random-fourier-features/##a1-gaussian-kernel-derivation
https://gregorygundersen.com/blog/2019/12/23/random-fourier-features/##a1-gaussian-kernel-derivation

Chapter 6

Sparse Kernel Machines

6.1 Support Vector Machine

6.1.1 Duality in Convex Optimization

Given a optimization problem:

minf0(x) (6.1.1)

s.t.fi(x) ≤ 0, i = 1, ..., n

hj(x) = 0, j = 1, ...,m

The Lagrangian is defined as:

Definition 6.1.1 (Lagrangian). L(x, λ, ν) = f0(x)+
∑

i λifi(x)+
∑

j νjhj(x), λi ≥
0

To optimize the primal problem, we set:

I−(u)

{
0, u ≤ 0

∞, u > 0 ≥ 0
, I0(u)

{
0, u = 0

∞, u ̸= 0

Let f̃(x) := f0(x) +
∑

i I−(fi(x)) +
∑

j I0(hj(x)) Then, it is clear that the
optimal value p∗ is achieved by:

p∗ = inf
x
f̃(x) (6.1.2)

Besides,

f̃(x) = f0(x) +
∑
i

I−(fi(x)) +
∑
j

I0(hj(x))

= f0(x) +
∑
i

sup
λi

λifi(x) +
∑
j

sup
νj

νjfj(x)

= sup
λ≥0,ν

{f0(x) +
∑
i

λifi(x) +
∑
j

νjhj(x)}

= sup
λ≥0,ν

L(x, λ, ν) (6.1.3)

22

CHAPTER 6. SPARSE KERNEL MACHINES 23

Thus,
p∗ = inf

x
sup
λ≥0,ν

L(x, λ, ν) (6.1.4)

which is a minmax problem. But it is unsolvable!
To solve the primal problem, we consider constructing a dual problem and

solve it instead. And it is natural to think about supλ≥0,ν infx L(x, λ, ν), which
is of the maxmin format. Let g(λ, ν) = infx L(x, λ, ν)

d∗ = sup
λ≥0,ν

inf
x
L(x, λ, ν) (6.1.5)

= sup
λ≥0,ν

g(λ, ν) (6.1.6)

But it is noticeable that infx supλ,ν L(x, λ, ν) ≥ supλ,ν infx L(x, λ, ν), which
means that the result computed by optimizing the dual problem is a lower bound
of the primal problem. Thus, solving the dual problem would not get a better
solution. And p∗ − d∗ is called optimal duality gap. If the duality gap is 0, i.e.
p∗ − d∗ = 0, a strong duality holds.

Definition 6.1.2 (K.K.T conditions). The K.K.T conditions for a given convex
optimization problem is that:

fi(x) ≤ 0, i = 1, ..., n

hj(x) = 0, j = 1, ...,m

λi ≥ 0, i = 1, ..., n

λifi(x) = 0, i = 1, ..., n

∇f0(x∗) +
∑
i

λ∗i∇fi(x∗) +
∑
j

ν∗j∇hj(x∗) = 0

Theorem 6.1.1. If objective function is differentiable, and constraint functions
satisfy Slater’s Condition(i.e.∃x∗ ∈ inf f̃ such that fi(x

∗) < 0 and hj(x
∗) = 0),

then
K.K.T conditions hold ⇐⇒ global optimality exists

Proof. Here’s an informal proof, but could give a hint why this theorem comes.
If strong duality holds:

f0(x
∗) = g(λ∗, ν∗)

= inf
x
f0(x) +

∑
i

λ∗i fi(x) +
∑
j

ν∗j hj(x)

≤ f0(x
∗) +

∑
i

λ∗i fi(x
∗) +

∑
j

ν∗j hj(x)
∗

≤ f0(x
∗)

=⇒
∑
i

λ∗i fi(x
∗) = 0

⇐⇒λ∗i fi(x
∗) = 0 (Complementary Slackness)

⇐⇒

{
λ∗i > 0 =⇒ fi(x

∗) = 0

fi(x
∗) < 0 =⇒ λ∗i = 0

(Complementary Slackness)

CHAPTER 6. SPARSE KERNEL MACHINES 24

Besides, since x∗ is an optimality, then

∇f̃(x)|x=x∗ = 0

⇐⇒∇f0(x∗) +
∑
i

λ∗i∇fi(x∗) +
∑
j

ν∗j∇hj(x∗) = 0

Above all, that’s why K.K.T conditions come.

6.1.2 SVM for classification

Linear-seperable case

When the data is linear seperable, we’re going to find a hyperplane such that
ŷ = 1 if ωTx+ b ≥ 1. To find the best hyperplane, we’re going to maximize the
margin, i.e.

max
ω,b

2

∥ω∥
s.t. yi(ω

Txi + b) ≥ 1, i = 1, ..., n

⇐⇒min
ω,b

1

2
∥ω∥2 (6.1.7)

s.t. yi(ω
Txi + b) ≥ 1, i = 1, ..., n

Non-linear-seperable case

If the data is not linear seperable, we have to allow a certain number of errors,
by adding a 0− 1 loss term:

min
ω,b

1

2
∥ω∥2 + C

n∑
i=1

1(yi(ω
Txi + b) < 0) (6.1.8)

where C controls the trade-off between maximum margin and loss. However,
0− 1 loss is nondifferentiable at 0, which might cause inconvience in GD-based
optimization methods. To solve that, we use Hinge loss instead:

Definition 6.1.3 (Hinge loss).

h(α) = (1− α)+

{
1− α, if 1− α > 0

0, else

Thus, the primal problem becomes:

min
ω,b

1

2
∥ω∥2 + C

n∑
i=1

h(yi(ω
Txi + b)) (6.1.9)

⇐⇒min
ω,b,ξ

1

2
∥ω∥2 + C

n∑
i=1

ξi (6.1.10)

s.t.

{
1− yi(ω

Txi + b) ≤ ξi

ξi ≥ 0

CHAPTER 6. SPARSE KERNEL MACHINES 25

which is called c-SVM. Then, the Lagrangian is:

L(ω, b, ξ, α, λ) =
1

2
∥ω∥2 + C

n∑
i=1

ξi +

n∑
i=1

αi(1− yi(ω
Txi + b)− ξi) +

n∑
i=1

λi(−ξi)

(6.1.11)
and, 

∂L

∂ω
= ω −

∑
i

αiyixi = 0 =⇒ ω∗ =

n∑
i=1

αiyixi

∂L

∂b
= −

∑
i

αiyi = 0

∂L

∂ξi
= C − αi − λi = 0 =⇒ αi = C − λi

(6.1.12)

Inputting ω∗, b∗ and ξ∗ from 6.1.12 to g, we get

g(α, λ) =
1

2

∑
i

∑
j

αiαjyiyjx
T
i xj +

∑
i

αi −
∑
i

αiyi(
∑
j

αjyjxj)
Txi

=

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (6.1.13)

Combing the conditions from 6.1.12,

max
α,λ

g(α, λ) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (6.1.14)

s.t.


∑
i

αiyi = 0

0 ≤ αi ≤ C

This optimization problem could be easily solved, as it is a constrained quadratic
optimization over α!

After that, the optimal params are obtained by:
ω∗ =

n∑
i=1

α∗yixi

b∗ =
1

yi
− ω∗Txi, for any margin support vectors, i.e. those 0 < αi < C

(6.1.15)

Definition 6.1.4 (Support vectors).

1. Non-margin support vectors: αi = C > 0

2. Margin support vectors: 0 < αi < C

3. Non support vectors: αi = 0

By this definition, it is clear that params of SVM are only determined by
support vectors!

CHAPTER 6. SPARSE KERNEL MACHINES 26

Kernel SVM

To include nonlinearity, we combine SVM with kernel method. Suppose the
response function is given by f(x) = ωTϕ(x) + b, instead of ωTx+ b. Following
the notion in Chapter4, given a kernel function k, note k(x, x′) = ϕ(x)Tϕ(x′),
K ∈ Rn×n and Kij = k(xi, xj). Following the same procedure in the former
subsection, we get:

g(α, λ) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjϕ(xi)
Tϕ(xj)

=

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKij (6.1.16)

ω∗ =

n∑
i=1

α∗yiϕ(xi) (6.1.17)

f(x) =

n∑
i=1

α∗yik(x, xi) + b∗ (6.1.18)

6.1.3 SVM for regression

Similar with SVM for classification, in regression task, SVM use another error
function Eϵ(α), which is called ϵ-insensitive error function.

Definition 6.1.5 (ϵ-insensitive error function).

Eϵ(α) =

{
0, if |α| < ϵ

|α| − ϵ, else
(6.1.19)

Thus, the optimization problem becomes,

min
ω,b

1

2
∥ω∥2 + C

n∑
i=1

Eϵ(ω
Tϕ(xi) + b− yi) (6.1.20)

By introducing the slack variables ξ and ξ̂, then the previou problem is equiva-
lent to

min
ω,b,ξ

1

2
∥ω∥2 + C

n∑
i=1

(ξi + ξ̂i) (6.1.21)

s.t.


ξi ≥ 0

ξ̂i ≥ 0

ξi ≥ ωTϕ(xi) + b− yi − ϵ

ξ̂i ≥ yi − ωTϕ(xi)− b− ϵ

(6.1.22)

CHAPTER 6. SPARSE KERNEL MACHINES 27

=⇒ L(ω, b, ξ, ξ̂, α, α̂, λ, λ̂) =
1

2
∥ω∥2 + C

n∑
i=1

(ξi + ξ̂i)−
∑
i

λiξi −
∑
i

λ̂iξ̂i

+
∑
i

αi(ω
Tϕ(xi) + b− yi − ϵ− ξi)

+
∑
i

α̂i(yi − ωTϕ(xi)− b− ϵ− ξ̂i) (6.1.23)

=⇒



∂L

∂ω
= ω +

∑
i

αiϕ(xi)−
∑
i

α̂iϕ(xi) = 0

∂L

∂b
=

∑
i

(αi − α̂i) = 0

∂L

∂ξi
= C − αi − λi = 0

∂L

∂ξ̂i
= C − α̂i − λ̂i = 0

(6.1.24)

By combing 6.1.21 and 6.1.24,

g(α, α̂, λ, λ̂) = −1

2

n∑
i=1

n∑
j=1

(αi − α̂i)(αj − α̂j)Kij

−
∑
i

(αi − α̂i)yi − ϵ
∑
i

(αi + α̂i) (6.1.25)

ω∗ =

n∑
i=1

(α̂i − αi)ϕ(xi) (6.1.26)

(6.1.27)

By K.K.T conditions, 
αi(f(xi)− yi − ϵ− ξi) = 0

α̂i(yi − f(xi)− ϵ− ξ̂i) = 0

λiξi = (C − αi)ξi = 0

λ̂iξ̂i = (C − α̂i)ξ̂i = 0

(6.1.28)

By K.K.T conditions,

1. if αi ̸= 0 =⇒ f(xi)− yi − ϵ− ξi = 0 =⇒ f(xi)− yi − ϵ ≥ 0, which means
that the data point lies on or above the uppper boundary of ϵ-tube

2. if α̂i ̸= 0, similarly, the data point lies on or below the lower boundary of
ϵ-tube

3. if αi = α̂i = 0, the data point lies within the ϵ-tube

Thus, the support vectors are those αi ̸= 0 or α̂i ̸= 0. And for 0 < αi < C, by
K.K.T, ξi = 0. Then f(xi)− yi − ϵ = 0 and thus,

b∗ = yi + ϵ− ω∗Tϕ(xi) (6.1.29)

And thus the predictive function is

f(x) =

n∑
i=1

(α̂i − αi)k(x, xi) + b∗ (6.1.30)

CHAPTER 6. SPARSE KERNEL MACHINES 28

6.2 Relevance Vector Machines

cons of SVMs


1.output are decisions, not posterior

2.2-classes for classification

3.hyperparam C

=⇒RVM: A Bayesian sparse kernel technique.

6.2.1 RVM for Reg

Intro

Suppose

p(y|x,w, β) = N(y|f(x), β−1) (6.2.1)

with


β = σ2

f(x) =

M∑
i=1

wiϕi(w) = wTϕ(w)
(6.2.2)

Similar with SVM, we form f(x) as a linear combination of a kernel function
evaluating at each pair (x, xi):

f(x) = w0 +

N∑
i=1

wik(x, xi), w ∈ RN+1 (6.2.3)

We then obtain the likelihood:

p(D|w) = ΠN
i=1N(yi|f(xi), β−1) (6.2.4)

Besides, assign a prior for w:

p(w|α) = N(w|0, diag(α−1
i)) (6.2.5)

By 1.3.2 and we have posterior:

p(w|D,α, β) = N(w|m,Σ) (6.2.6)

with

{
m = βΣKy

Σ = (diag(αi) + βKTK)−1
(6.2.7)

and evidence:

p(D|α, β) = N(y|0, β−1I +KT diag(α−1
i)K) (6.2.8)

Hyperparam Optimization

To optimize α and β, we maximize the evidence:

ˆα, β = argmax
α,β

p(D|α, β)

= argmax
α,β

log p(D|α, β)

= argmax
α,β

−1

2
(log |C|+ yTC−1y) (6.2.9)

where C is the covariance matrix of evidence: β−1I +KT diag(α−1
i)K.

CHAPTER 6. SPARSE KERNEL MACHINES 29

Relevance vectors

Similar to SVMs, if w∗
i ̸= 0, then xi is called relevance vector.

Prediction

p(y′|x′, D, α∗, β∗) =

∫
p(y′|w, x′, β∗)p(w|D,α∗)dw (6.2.10)

=

∫
N(y′|f(x′), β∗−1)N(w|m,Σ)dw (6.2.11)

= N(y′|mTKx′x, β
∗−1 +KT

x′xΣKx′x) (6.2.12)

6.2.2 RVM for clf

Let,

p(y = k|x,w) = fk(x,w) =
ak∑
j aj

(6.2.13)

with ak =

N∑
i=1

wik(x, xi) + w0 (6.2.14)

and we use the same prior for α as RVM Reg6.2.5, then the likelihood is:

p(D|w,α, β) = ΠN
n=1Π

K
k=1fk(xn, w)

ynk (6.2.15)

and log-posterior:

log p(w|D,α, β) =
∑
n

∑
k

ynk log fk(x,w) +

M∑
j=1

logN(wj |0, α−1
j) (6.2.16)

Chapter 7

Graphical Models

Definition 7.0.1 (Graph).

1. DAG: directed acycle graph, leads to Bayesian Net

2. UG: undirected graph, leads to Markov Random Field

7.1 Bayesian Network

7.1.1 Intro

Given a graph (G,X) with N nodes, we could compute the prob of this graph
by:

p(X) = ΠN
n=1p(xn|pan) (7.1.1)

with pan = {a|a is a parent of xn} (7.1.2)

e.g.

Figure 7.1: DAG

P (x1, ..., x7) = P (x1)P (x2)P (x3)P (x4|x1, x2, x3)P (x5|x1, x3)P (x6|x4)P (x7|x4, x5)

7.1.2 Sample from graph

To sample nodes in a graph, we could sequencially sample the parant pan first,
then xn|pan

30

CHAPTER 7. GRAPHICAL MODELS 31

7.1.3 Num of params, example of discrete variables

suppose there are K states for each node, then

For


fully connceted net: #params = NK − 1

isolated net: #params = N(K − 1)

chain: #params = K − 1 + (N − 1)K(K − 1)

7.1.4 Linear Gaussian Models

p(xi|pai) = N(xi|
∑
j∈pai

wijxj + bi, vi) (7.1.3)

7.2 Conditional Independence

(a) tail-to-tail (b) head-to-tail (c) head-to-head

Figure 7.2: Conditional independence


c is tail-to-tail =⇒ a ⊥ b|c
c is head-to-tail =⇒ a ⊥ b|c
c is head-to-head =⇒ a ̸⊥ b|c, (but a ⊥ b)

7.3 Markov Random Field

Definition 7.3.1 (Markov Random Field). Markov Random Field(MRF), also
called Markov Net, is an undirected graph model.

Definition 7.3.2 (Clique). Given a UG (G,X), a subset X̃ ⊆ X is called a
clique, if ∀x̃i, x̃j ∈ X̃, x̃i ↔ x̃j

Definition 7.3.3 (Maximum clique). A clique is called a maximum clique if
adding any other node into this clique makes it no longer a clique.

Suppose C is a set of maximum cliques of an undirected graph G, then,

p(X) =
1

Z
Πcψc(Xc) (7.3.1)

Z =

∫
X
Πcψc(Xc)dX (7.3.2)

where ψ(·) is a non-negative potential and usually,

ψ(Xc) = exp(−E(Xc)) (7.3.3)

CHAPTER 7. GRAPHICAL MODELS 32

where E(·) is called energy function. Thus,

p(X) =
1

Z
exp(−

∑
c

E(Xc)) (7.3.4)

7.4 Inference in Graphical Models

7.4.1 Inference on a chain

Given a chain with nodes {xn}Nn=1, by Bayesian Net,

P (X) =
1

Z
ψ12(x1, x2)...ψN−1,N (xN−1, xN) (7.4.1)

To compute the marginal P (xn),

P (xn) =
1

Z

∑
x1

...
∑
xn−1

∑
xn+1

...
∑
xN

ψ12(x1, x2)...ψn−1,n(xn−1, xn) (7.4.2)

=
1

Z
{
∑
x1

...
∑
xn−1

ψ12(x1, x2)...ψn−1,n(xn−1, xn)} (7.4.3)

{
∑
xn+1

...
∑
xN

ψ12(xn+1, xn+2)...ψN−1,N (xN−1, xN)} (7.4.4)

=
1

Z
{
∑
xn−1

ψn−1,n(xn−1, xn)...[
∑
x2

ψ23(x2, x3)[
∑
x1

ψ12(x1, x2)]]} (7.4.5)

{
∑
xn+1

ψn+1,n+2(xn+1, xn+2)...[
∑
xN−1

ψN−1,N−2(xN−1, xN−2)[
∑
xN

ψN−1,N (xN−1, xN)]]}

(7.4.6)

let,

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)...[
∑
x2

ψ23(x2, x3)[
∑
x1

ψ12(x1, x2)]] (7.4.7)

µβ(xn) =
∑
xn+1

ψn+1,n+2(xn+1, xn+2)...[
∑
xN

ψN−1,N (xN−1, xN)] (7.4.8)

then, the calculation of marginal is given by the forward-backward algorithm:

P (xn) =
1

Z
µα(xn)µβ(xn) (7.4.9)

µα =
∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1) (7.4.10)

µβ =
∑
xn+1

ψn,n+1(xn, xn+1)µα(xn+1) (7.4.11)

P (xn−1, xn) = µα(xn−1)ψn−1,n(xn−1, xn)µβ(xn+1) (7.4.12)

7.5 Inference on Factor Graph

Given a graph with two type of nodes: original nodes(called nodes) and factor
nodes(called factors, is a function), where each nodes are associated via factors.

CHAPTER 7. GRAPHICAL MODELS 33

Thus,
P (X) = Πsfs(Xs) (7.5.1)

where fs is a factor and Xs ⊆ X represents nodes associated with fs.
e.g.

Figure 7.3: Factor graph

P (x1, x2, x3) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

Given a tree structure factor graph, a joint distribution could be expressed
by the product of factors which are its neighbors, that is

P (X) = Πs∈ne(x)Fs(x,Xs) (7.5.2)

where ne(x) indicates factor nodes that are neighbor to x. Then the marginal
is:

P (x) =
∑
X\x

Πs∈ne(x)Fs(x,Xs) (7.5.3)

= Πs∈ne(x)

∑
Xs

Fs(x,Xs) (7.5.4)

Define,

µfs→x(x) =
∑
Xs

Fs(x,Xs) (7.5.5)

Let Xs = (x1, ..., xM), and notice that Fs could be decomposed by

Fs(x,Xs) = fs(x,Xs)G1(x1, Xs1)...GM (xM , XsM) (7.5.6)

Then,

µfs→x(x) =
∑
Xs

fs(x,Xs)Πm∈ne(fs)\xGm(xm, Xsm) (7.5.7)

=
∑
Xs

fs(x,Xs)Πm∈ne(fs)\x
∑
Xsm

Gm(xm, Xsm) (7.5.8)

Define,

µxm→fs(xm) =
∑
Xsm

Gm(xm, Xsm) (7.5.9)

Also,
Gm(xm, Xsm) = Πl∈ne(xm)\sFl(xm, Xml) (7.5.10)

CHAPTER 7. GRAPHICAL MODELS 34

Thus,

P (x) = Πs∈ne(x)µfs→x(x) (7.5.11)

µfs→x(x) =
∑
Xs

fs(x,Xs)Πm∈ne(fs)\xµxm→fs(xm) (7.5.12)

µxm→fs(xm) =
∑
Xsm

Πl∈ne(xm)\sFl(xm, Xml)

= Πl∈ne(xm)\sµfl→xm(xm) (7.5.13)

with leaf nodes: µf→x(x) = f(x) and µx→f (x) = 1 (7.5.14)

The previous procedure is called Sum-Product Algorithm.
e.g. calculating marginal of x2

Figure 7.4: Sum-product algorithm example

µx1→fa(x1) = 1, µx3→fb(x2) = 1, µx4→fc(x3) = 1

µfa→x2(x2) =
∑
x1

fa(x1, x2)µx1→fa(x1) =
∑
x1

fa(x1, x2)

µfb→x2
(x2) =

∑
x3

fa(x2, x3)µx1→fb(x3) =
∑
x3

fb(x2, x3)

µfc→x2
(x2) =

∑
x4

fa(x2, x4)µx1→fc(x4) =
∑
x4

fc(x2, x4)

p(x2) = Πs∈ne(x2)µfs→x2
(x2)

= µfa→x2
(x2)µfb→x2

(x2)µfc→x2
(x2)

=
∑
x1

fa(x1, x2)
∑
x3

fb(x2, x3)
∑
x4

fc(x2, x4)

Chapter 8

EM

8.1 EM algorithm

8.1.1 EM in an optimization viewpoint

In some probabilistic modeling cases, we might encounter hidden variables, like
mixture gaussians, resulting that we have to consider a joint distribution about
the observation and hidden states. For simplification, we assume Z is discrete,
and for continous variable, it’s easy to just change the summation into an inte-
gral. For example, in a maximum likelihood settings,

max
θ

logP (X|θ) = max
θ

log
∑
Z

P (X,Z|θ) (8.1.1)

However, even ifX and Z could be assumed as variables from exponential family,
the summation inside the logarithm makes the joint distribution intractable.
To solve this problem, an intuition is to switch the log and

∑
, with the form:

maxθ
∑

z logP (X,Z|θ) which results in a type of algorithm called EM algorithm.
By Cauchy-Schwarz Inequality:

log
∑
Z

P (X,Z|θ) = log
∑
Z

q(Z)
P (X,Z|θ)
q(Z)

(8.1.2)

≥
∑
Z

q(Z) log
P (X,Z|θ)
q(Z)

(8.1.3)

to make the inequality tight, we must have: P (X,Z|θ)
q(Z) is constant with the vari-

able Z. While P (X,Z|θ) ∝ P (Z|X, θ)P (X|θ), then we must have:

q(Z) = P (Z|X, θ) (8.1.4)

then we have,

logP (X|θ) ≥
∑
Z

P (Z|X, θ) log P (X,Z|θ)
P (Z|X, θ)

(8.1.5)

= EZ∼P (Z|X,θ)[log
P (X,Z|θ)
P (Z|X, θ)

] (8.1.6)

35

CHAPTER 8. EM 36

Then, instead of optimizing the likelihood logP (X|θ), we optimize its lower
bound:

max
θ

EZ∼P (Z|X,θ)[log
P (X,Z|θ)
P (Z|X, θ)

] (8.1.7)

resulting to the EM algorithm:

1. initialize θ randomly, i.e. θ(0)

2. sample Z = (Z1, ..., ZM) from its posterior P (Z|X, θ(t))

3. E step: compute Q(θ, θ(t)) = 1
M

∑M
m=1 log

P (X,Zm|θ)
P (Zm|X,θ(t−1))

4. M step: θ(t+1) = argmaxθ Q(θ, θ(t))

8.1.2 EM in KL-divergence viewpoint

In other perspective, we could derive EM from KL-divergence. First recap the
definition of KL-divergence, which measures the distance between two proba-
bility distributions.

Definition 8.1.1 (KL-divergence).

KL(q||p) = −
∑
z

q(z) log
p(z)

q(z)
(8.1.8)

, KL(q||p) ≥ 0 and it is not symmetric, i.e. KL(q||p) ̸= KL(p||q).

And we define Q(q, θ) =
∑

Z q(Z) log
P (X,Z|θ)

q(Z) , then,

logP (X|θ) = log
P (X,Z|θ)
P (Z|X, θ)

=
∑
Z

q(Z) log
P (X,Z|θ)
P (Z|X, θ)

=
∑
Z

q(Z) log
P (X,Z|θ)q(Z)
q(Z)P (Z|X, θ)

=
∑
Z

q(Z) log
P (X,Z|θ)
q(Z)

−
∑
Z

q(Z) log
P (Z|X, θ)
q(Z)

= Q(q, θ) +KL(q||P (Z|X, θ)) (8.1.9)

Notice that KL-divergence is non-negative, then

logP (X|θ) ≥ Q(q, θ) (8.1.10)

the inequality is tight if and only if KL(q||P (Z|X, θ)) = 0, which indicates
q(Z) = P (Z|X, θ). And thus,

logP (X|θ) = Q(P (Z|X, θ), θ) = EZ∼P (Z|X,θ)[log
P (X,Z|θ)
P (Z|X, θ)

] (8.1.11)

Thus, the EM algorithm could be revisited in a coordinate-ascent perspective:

E step : q(t) = argmax
q
Q(q, θ(t)) (8.1.12)

M step : θ(t+1) = argmax
θ
Q(q(t), θ) (8.1.13)

CHAPTER 8. EM 37

8.1.3 Convergence of EM

From the coordinate ascent viewpoint:

logP (X|θ(t)) = Q(θ(t), q) +KL(q||P (Z|X, θ(t))) (8.1.14)

= Q(θ(t), q(t)) (8.1.15)

≤ Q(θ(t+1), q(t)) (8.1.16)

≤ Q(θ(t+1), q(t+1)) (8.1.17)

= logP (X|θ(t+1)) (8.1.18)

thus, the EM algorithm would converge.

8.1.4 EM for Bayesian

In a Bayesian settings, we are optimizing:

max
θ

logP (θ|X) ⇔ max
θ

logP (X|θ) + logP (θ) (8.1.19)

Thus, to use EM to optimize the posterior, we just need to modify the M-step
by:

θ(t+1) = argmax
θ
Q(q(t), θ) + logP (θ) (8.1.20)

8.2 EM examples

8.2.1 K-means algorithm

To cluster a set of data into K clusters, given K initial points m1, ...mK , we
iteratively update the clusters by:

sn = argmin
k

∥xn −mk∥2

mk =
1

Nk

∑
n∈Ck

xn

which sequentially minimizes the cost function:

c({snk}, {mk}) =
∑
k

∑
n∈Ck

∥x−mk∥2

And the previous optimization could be viewed as an EM algorithm:

E-step : mk = argmin
mk

c({snk}, {mk}) =
1

Nk

∑
n∈Ck

xn

M-step : snk = argmin
snk

c({snk}, {mk}) = argmin
k

∥xn −mk∥2

Cons of K-means:

1. hard-allocation: there is no prob distribution about the clustering results

2. Sensitive to initializations: K-means++, which first apply K-means to a
small subset of training data, then use its clusters’ mean as the original
points and start K-means for whole dataset.

CHAPTER 8. EM 38

8.2.2 Mixture Gaussians

In mixture gaussians setting, we suppose an observation is formed as:

p(x|π, µ,Σ) =
K∑

k=1

πkN(x|µk,Σk) (8.2.1)

Introduce a hidden state z ∈ {0, 1}K indicates the belonging of gaussians, with∑
k zk = 1, then

p(x|z = k, µk,Σk) = N(x|µk,Σk) (8.2.2)

p(X,Z|π, µ,Σ) = ΠN
n=1Π

K
k=1(πkN(xn|µk,Σk))

znk (8.2.3)

Let θ = (π, µ,Σ), with z ∈ {0, 1}K :

q(z) = p(z|x, θ) (8.2.4)

∝ p(x|z, θ)p(z|θ) (8.2.5)

= ΠK
k=1(πkN(x|µk,Σk))

zk (8.2.6)

⇒ E[znk] = p(znk = 1) =
πkN(xn|µk,Σk)∑
j πjN(xn|µj ,Σj)

(8.2.7)

:= γ(znk) (8.2.8)

Thus,

Q(θ, q) = Eq(Z)[log
P (X,Z|θ)
q(Z)

] (8.2.9)

= Eq(Z)[logP (X,Zθ)]−H(q(Z)) (8.2.10)

Eq(Z)[logP (X,Zθ)] = Eq(Z)[
∑
n

∑
k

znk{log πk + logN(xn|µk,Σk)}] (8.2.11)

=
∑
n

∑
k

γ(znk){log πk + logN(xn|µk,Σk)} (8.2.12)

Thus,

E step : γ(z
(t)
nk) =

π
(t)
k N(xn|µ(t)

k ,Σ
(t)
k)∑

j πjN(xn|µ(t)
j ,Σ

(t)
j)

(8.2.13)

M step : θ(t+1) = arg max
θ=(π,µ,Σ)

∑
n

∑
k

γ(z
(t)
nk){log πk + logN(xn|µk,Σk)}

(8.2.14)

8.2.3 Mixture Bernoulli

Given data {xn}Nn=1, with xn ∈ RD. Let,

p(x|µ) = ΠD
d=1µ

xd

d (1− µd)
1−xd (8.2.15)

consider:

p(x|µ, π) =
K∑

k=1

πkp(x|µk) (8.2.16)

p(x|µk) = ΠD
d=1µ

xd

kd(1− µkd)
1−xd (8.2.17)

CHAPTER 8. EM 39

assign a hidden state z ∈ {0, 1}K :

p(x|zk = 1, µ) = ΠD
d=1µ

xd

kd(1− µkd)
1−xd (8.2.18)

p(X,Z|π, µ) = ΠN
n=1Π

K
k=1(πkp(xn|znk = 1, µ))znk (8.2.19)

P (Z|X,π, µ) ∝ P (X,Z|π, µ) (8.2.20)

⇒ E[znk] =
πkµ

xnd

kd (1− µkd)∑
j πjµ

xnd

jd (1− µjd)
:= γ(znk) (8.2.21)

Q(θ, q) = Eq(Z)[logP (X,Z|π, µ)]−H(q(Z)) (8.2.22)

Eq(Z)[logP (X,Z|π, µ)] =
∑
n

∑
k

γ(znk){log πk +
∑
d

xnd logµkd

+
∑
d

(1− xnd) log(1− µkd)} (8.2.23)

Thus, we optimize Q and obtain:

Nk =
∑
n

γ(znk) (8.2.24)

Xk =
1

Nk

∑
n

γ(znk)xn (8.2.25)

µ̂k = Xk (8.2.26)

π̂k =
Nk

N
(by Lagrange, constrainting that)

∑
k

πk = 1 (8.2.27)

then,

E step : γ(z
(t)
nk) =

π
(t)
k µxnd

kd
(t)(1− µ

(t)
kd)∑

j πjµ
xnd

jd
(t)(1− µ

(t)
jd)

(8.2.28)

M step : θ(t+1) = (

∑
n γ(z

(t)
nk)xn∑

n γ(z
(t)
nk)

,

∑
n γ(z

(t)
nk)

N
) (8.2.29)

8.2.4 Bayesian Linear Reg

In the bayesian linear reg setting, we have

log p(y, w|x, α, β) = log p(y|w, x, β) + log p(w|α) (8.2.30)

with p(y|w, x, β) = N(y|wTϕ(x), β−1) and p(w|α) = N(w|0, α−1I). Then the
posterior of w is:

p(w|D,α, β) = N(w|m,Σ) (8.2.31)

m = ΣΦT y (8.2.32)

Σ = (β−1ΦTΦ+ α−1I)−1 (8.2.33)

CHAPTER 8. EM 40

We now consider using EM to optimize the hyperparams θ = (α, β):

max
θ
Q(θ, q) = max

θ
Eq(w)[log

p(Y,w|X, θ)
q(w)

] (8.2.34)

= max
θ

Eq(w)[log p(Y |w,X, θ) + log p(w|θ)] (8.2.35)

= max
θ

Eq(w)[
∑
n

logN(yn|wTϕ(xn), β
−1)] + logN(w|0, α−1I)

(8.2.36)

= max
θ

N

2
log

β

2π
+
M

2
log

α

2π
−Eq(w)[

β

2
∥Y − Φw∥2 + α

2
wTw]

(8.2.37)

= max
θ

N

2
log

β

2π
+
M

2
log

α

2π

− β

2
{Y TY +mTΦTΦm− 2mTΦT y +Σ} − α

2
(Tr(Σ) +

∑
i

m2
i)

(8.2.38)

thus, we’re optimizing:

max
θ
Q(θ, q) = max

θ

N

2
log

β

2π
+
M

2
log

α

2π

− β

2
{∥Y − Φm∥2 +Σ} − α

2
(Tr(Σ) +

∑
i

m2
i) (8.2.39)

and finally we have:

m(t) = Σ(t)ΦT y (8.2.40)

Σ(t) = (
1

β(t)
ΦTΦ+

1

α(t)
I)−1 (8.2.41)

q(t)(w) = N(w|m(t),Σ(t)) (8.2.42)

β(t+1) =
N

∥Y − Φm(t)∥2 +Σ(t)
(8.2.43)

α(t+1) =
M

Tr(Σ(t)) +
∑

i(m
(t)
i)2

(8.2.44)

	Preliminary
	Beta Distribution
	Dirichlet Distribution
	Gaussian Distribution
	Periodic Variables
	Laplacian Approximation

	Linear models for Regression
	Intro
	regularization
	Bayesian view for Ridge Regression

	Linear models for Classification
	Intro
	Discriminant models
	Generative models

	Fisher's Discriminant model
	Logistic and it's variants
	logistic
	IRLS
	Multiclass logistic
	Probit Reg
	Bayesian logistic Reg

	Kernel methods
	Intro
	Example of kernels
	Kernel constructions
	Kernel Regression: Nadaraya-Watson Model
	Representing Probability Distributions with Features

	Gaussian Process
	GP Regression
	GP vs linear regression

	GP Classification
	General case
	Example - Binary case

	Large-Scale Kernel Approximation
	Low Rank Matrix Approximation
	Random Fourier Features

	Sparse Kernel Machines
	Support Vector Machine
	Duality in Convex Optimization
	SVM for classification
	SVM for regression

	Relevance Vector Machines
	RVM for Reg
	RVM for clf

	Graphical Models
	Bayesian Network
	Intro
	Sample from graph
	Num of params, example of discrete variables
	Linear Gaussian Models

	Conditional Independence
	Markov Random Field
	Inference in Graphical Models
	Inference on a chain

	Inference on Factor Graph

	EM
	EM algorithm
	EM in an optimization viewpoint
	EM in KL-divergence viewpoint
	Convergence of EM
	EM for Bayesian

	EM examples
	K-means algorithm
	Mixture Gaussians
	Mixture Bernoulli
	Bayesian Linear Reg

