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Abstract

Efficiency and sample quality are essential when drawing statistically independent samples
from a Boltzmann-type distribution, which is desired in a wide range of scientific problems,
such as generating equilibrium samples of many-body systems. Statistical methods like
Monte Carlo and MCMC, or actual numerical methods like Molecular Dynamics, are promis-
ing but computationally expensive, emerging a trend that leverages the data compression
capacity of neural networks for efficient sampling.

In this thesis, we propose ENERGY-BASED DENOISING ENERGY MATCHING (EnDEM)
and BOOTSTRAP ENDEM (BEnDEM). The former one, EnDEM, is inspired by the current
state-of-the-art Boltzmann neural sampler, DEM, by targeting a less noisy stochastic energy
estimator which allows many potentials to further improve performance. While the latter one,
BEnDEM, is built on top of EnDEM which improves its learning target by bootstrapping
from the learned energy. Both EnDEM and BEnDEM are trained in a bi-level iterated
scheme as iDEM, which includes a simulation-free inner loop training an energy-based
diffusion sampler and an outer-loop that simulates the learned diffusion sampler to generate
more informative samples to further improve the sampler, resulting in scalability to high
dimensions. We evaluate EnDEM and BEnDEM on a suit of tasks ranging from synthetic
energy functions to invariant n-body particle systems, demonstrating their stronger capacity
compared with DEM. We also provide multiple possible ways for further improvement built
on top of our models, demonstrating their potential to solve higher dimensional and more
complex tasks in the future.
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Nomenclature

Distributions and Random Variables

p(x) The density of a random variable at x

pt(x) The density of a time-dependent random variable at x

x A random variable

x(k) The kth sample drawn from any distribution

xt A time-dependent random variable at t

Functions

E The Energy function

Et The time-dependent Energy function at t, E0 = E

S The Score function

St The time-dependent Score function at t, S0 = S

Operators

∇ f The gradient w.r.t the first input of a function f , i.e., ∇ f = ∇x f (x, t)

∇θ f The gradient w.r.t parameters θ , where f is parameterized by θ

∇x · f The divergence of a function f w.r.t its first input x, i.e. ∇x · f = ∑i
∂ f (x,t)

∂xi

tr The trace of a matrix, e.g. tr(M) = ∑i Mii



Chapter 1

Introduction

Drawing independent samples from a target distribution is a fundamental task in probabilistic
modeling. Various applications are built on top of it, such as liquids Allen and Tildesley
(2017) and proteins Lazim et al. (2020). In this work, we focus on sampling from an
unnormalized density, i.e. Boltzmann-type distribution µtarget ∝ exp(−E(x)), of many-body
system, e.g. molecules, with goals of efficiency and mode-coverage.

In data-driven tasks, where sufficient amount of data is available, Diffusion Models (DMs;
Karras et al. (2022); Song et al. (2020b)) achieves state-of-the-art performance in many tasks,
such as Image Generation (Karras et al., 2022), Image Super-Resolution (Saharia et al., 2021),
Text-to-Image Synthesis (Nichol et al., 2021; Ramesh et al., 2022), Audio Generation (Kong
et al., 2020) and Molecular Design (Hoogeboom et al., 2022). And its efficiency, i.e. data
generation speed, can be further improved by several techniques like distillation (Luhman
and Luhman, 2021; Song et al., 2023).

While in many scientific settings, we are learning to sample from a target distribution
µtarget, where the size of the dataset (or initial samples) is limited or 0. To draw high-quality
samples from the target distribution, one can employ Monte Carlo (MC) methods and Markov
Chain Monte Carlo (MCMC) techniques, such as Annealed Importance Sampling (AIS;
Neal (2001)), Metropolis-Hastings (MH; Bishop (2006)), Harmonic Monte Carlo (HMC;
Betancourt (2018)) and Metropolis-Adjusted Langevin Algorithm (MALA; Roberts and
Tweedie (1996)). Alternatively, numerical methods like Molecule Dynamics (MD; Leimkuh-
ler and Matthews (2012)) can be employed. Though these methods are promising to generate
high-quality samples from the desired target distribution, they tend to be computationally
expensive and inefficient.

On the other hand, the nature of the insufficient amount of data prevents us from training
a deep generative model qθ , e.g. DMs, to approximate the target distribution µtarget, which is
typically maximizing log-likelihood (i.e. maxθ Eµtarget logqθ (x)) or equivalently minimizing
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the KL divergence (i.e. minθ DKL(µtarget∥qθ )). A potential remedy involves learning pseudo
data generated from an arbitrary prior, simulating a noising process as DMs and train a
neural sampler to match the trajectories, such as Path Integral Sampler (PIS; Zhang and
Chen (2022)), Time-reversed Diffusion Sampler (DIS; Berner et al. (2024)) and Denoising
Diffusion Sampler (DDS; Vargas et al. (2023)). However, these pure learning methods require
simulation during training, which poses challenges for scaling up to higher dimensional
tasks.

To solve aforementioned issues of recent samplers for Boltzmann-type distribution,
Akhound-Sadegh et al. (2024) proposes Iterated Denoising Energy Matching (iDEM), which
is not only computationally tractable but also guarantees good coverage of all modes, leading
to state-of-the-art generations outperform previous methods like Flow Annealed Bootstrap
(FAB; Midgley et al. (2023)) and those as mentioned above. iDEM proposes a bi-level
training scheme to target a novel noise-convolved score estimator which can be estimated
by the system energy E using Monte Carlo methods: the inner-loop is simulation-free and
trains a diffusion sampler targeting a novel score estimator with buffer samples; while the
outer-loop simulates the trained diffusion sampler to generate more informative data in the
buffer. Under this iterated bi-level training strategy, the diffusion sampler can keep drawing
more samples covering the modes of target distribution as well as learning corresponding
scores, which is similar to an off-policy reinforcement learning algorithm. While iDEM
achieves state-of-the-art performance, one can be an issue: when the noise level increases, the
variance of score estimators can be large enough to explode, resulting in an invalid training
target.

In this thesis, we first propose ENERGY-BASED DENOISING ENERGY MATCHING

(EnDEM), which targets the noise-convolved energies instead of scores. Sampling with
EnDEM is more expensive than iDEM, while the energy estimator is less noisy than the
score estimator and therefore can provide more useful training signals and achieve better
performance. Leveraging the learned annealed energies, we propose an improvement of
EnDEM via bootstrap energy estimation, BOOTSTRAP ENDEM (BEnDEM), which targets
a less noisy estimator at large t estimating from the well-learned energies at smaller noise
level. Experiments show that EnDEM can achieve better performance as well as faster
convergence-rate compared with DEM, while BEnDEM can further improve the performance
and can converge faster than DEM as well.

1.1 Contribution

This thesis is contributed as follows:
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• A comprehensive review of methods for sampling from Boltzmann-type distribution,
including classical ones like MCMC and most recent ones like DEM.

• We propose EnDEM, a novel energy-based model leveraging denoising diffusions for
high-quality samples, demonstrating better performance compared with DEM.

• We propose BEnDEM, an improvement of EnDEM via bootstrapping energy estima-
tion, achieving the best performance.

• Comprehensive theoretical analysis of DEM, EnDEM, and BEnDEM. We provide an
error bound of training target of EnDEM and the variance of both energy and score
based training targets. We also provide a theoretical understanding of BEnDEM from
a Variance-Bias trade-off perspective

• We also provide several future directions for further improving our models, such as
generalize EnDEM, efficient EnDEM sampling and EnDEM+MCMC.

1.2 Outline

The thesis is organized as follows:

• In Chapter 2, we introduce related background in methods for sampling from Boltzmann-
type distribution, including classical ones and neural samplers, as well as reviews of
related works.

• In Chapter 3, we introduce EnDEM, which is inspired by DEM but learning a less
noisy target and allows potential ways for further improvement.

• In Chapter 4, we introduce BEnDEM, which is built on top of EnDEM and uses the
idea of bootstrapping to reduce the variance of learning targets.

• In Chapter 5, we introduce the datasets, metrics, and settings for our experiments,
followed by the results.

• In Chapter 6, we conclude our works as well as discuss its limitations and future
directions.



Chapter 2

Background and preliminaries

In this chapter, we first introduce our target, the Boltzmann density, and classical methods for
sampling from this distribution like IS, HMC, and MALA. Then we talk about utilizing deep
learning techniques for sampling, including EBMs, SBMs, and Diffusion Models. While
those topics are extensive, they are highly relevant to our method and could provide more
useful insights. At the end of this chapter, we will review related works, especially the most
relevant one, DEM.

Before diving into this chapter, we outline the following three questions:

1. How to sample from a Boltzmann-type distribution?

2. How to speed up sampling by combining deep learning while preserving performance?

3. How to efficiently sample from a Boltzmann-type distribution with few to 0 data?

2.1 Boltzmann Densities

In statistical mechanisms and mathematics, a Boltzmann density µtarget is defined by an
unnormalized density function E :

µtarget(x) =
exp(−E(x))

Z
∝ exp(−E(x)) (2.1)

where E(x) is also called energy function, Z =
∫
Rd exp(−E(x))dx is the partition function

and typically intractable.
Boltzmann density is popular in a lot of scientific problems like many-body systems, e.g.

molecules, where its energy could be computed by the spatial relationship of particles and
the chemical bonds inside.



2.2 Classical Sampling Methods with MCMC 5

In some cases, we also have access to "scores", which are defined as the derivative of
log-likelihood w.r.t x:

S(x) := ∇x log p(x) =−∇xE(x) (2.2)

which is a vector field pointing to a direction corresponding to higher probability. For
example, in a molecular system, score refers to force, determining how atoms will move in
response to the energy landscape (Arts et al., 2023; Durumeric et al., 2024; Hsu et al., 2024).

Above all, an interesting and essential problem is:

How to sample from a Boltzmann-type distribution?

2.2 Classical Sampling Methods with MCMC

A very common technique for sampling from a Boltzmann density is using Markov Chain
Monte Carlo (MCMC; Bishop 2006). MCMC starts from samples x0 drawn from initial
proposal p0, and moves them around a sequence x0→ x1→ ...→ xn by a series of transition
kernels Tk(x,x′),k = 1, ...,n to reach the target distribution µtarget. In this section, we focus
on several common MCMC-based sampling methods, which are theoretically guaranteed to
converge to target distribution but are computationally expensive.

2.2.1 Metropolis Hastings

A way to construct such a transition kernel is followed by the Metropolis-Hastings (MH;
Bishop 2006) algorithm. In particular, at the kth step, in which the current state (sample) is
x(k) and given a (conditional) proposal qk(·|·) at the, MH first draws samples x′ ∼ qk(x′|x(k))
then accepts it as new state x(k+1) with probability Ak(x′,x(k)), where:

Ak(x,x′) = min
(

1,
µtarget(x′)qk(x|x′)
µtarget(x)qk(x′|x)

)
(2.3)

= min
(

1,
exp(−E(x′))qk(x|x′)
exp(−E(x))qk(x′|x)

)
(2.4)

Though MH is guaranteed to converge to the target distribution if the detailed balance
condition is satisfied:

µtarget(x(k+1))qk(x(k)|x(k+1)) = µtarget(x(k))qk(x(k+1)|x(k)) (2.5)
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Its convergence rate can be very slow and requires a long time to mix with the target
distribution.

2.2.2 Hamiltonian Monte Carlo

Though MH is theoretically guaranteed to converge to the target distribution, it suffers from
issues like mode collapse in high-dimensional space. Hamiltonian Monte Carlo (HMC;
Betancourt 2018), another type of MCMC, solves this issue by combining momentum, which
is inspired by Hamiltonian dynamics:

H(x, p) = E(x)+ 1
2

pT M−1 p (2.6)

dxi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂xi
(2.7)

where H is the Hamiltonian, and M is the mass matrix which is symmetric and positive
definite.

Similar to MH, HMC starts from an initial proposal q0 and iteratively samples new
proposal x′ by simulating the Hamiltonian dynamics (2.7) with an integrator for a fixed time
T :

p(t +
∆t
2
) = p(t)− ∆t

2
∇xE(x(t)) (2.8)

x(t +
∆t
2
) = x(t)+∆t p(t +

∆t
2
) (2.9)

p(t +∆t) = p(t +
∆t
2
)− ∆t

2
∇xE(x(t +

∆t
2
)) (2.10)

where p(0)∼N (0,M), x(0) = x(k) and x′ = x(k+1). Then a new state x(k+1) is generated by
accepting x′ with probability computed by Equation 2.4.

Even though HMC could be more efficient, as it uses the score, i.e. gradient of energy, its
performance is sensitive to the choice of step size T and mass m.

2.2.3 Metropolis-Adjusted Langevin Algorithm

To sample x from a Boltzmann-type target distribution µtarget, we could simulate the following
Langevin Dynamics:

dxt =−∇xE(xt)dt +
√

2dBt (2.11)

= S(xt)dt +
√

2dBt (2.12)
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where Bt is a suitable Brownian Motion. The marginal distribution of xt is guaranteed to
converge to µtarget as t→ ∞ (Barrat and Hansen, 2003).

The simple Langevin Dynamics is then improved by the Metropolis-Adjusted Langevin
Algorithm (MALA; Roberts and Tweedie 1996), which combines Langevin Dynamics and
MCMC. Similar to HMC, MALA starts from initial samples from a proposal q. Then, it
iteratively generates a new state x(k+1) by simulating Langevin Dynamics (2.11) for a fixed
time T and accepts it with probability computed by Equation 2.4.

2.2.4 Importance Sampling

It is often the case we are interested in the expectation of some observable f (x) with respect
to a distribution x∼ µtarget, i.e.

Eµtarget[ f (x)] =
∫

µtarget(x) f (x)dx (2.13)

When µtarget is simple and could be sampled directly, Equation 2.13 can be estimated via
Monte Carlo. However, when µtarget is complex or not easy to sample, we need alternative
methods.

Importance Sampling (IS) chooses an easy-to-sample distribution q as proposal and use
importance weights, w(xi) = exp(−E(xi))/q(xi), to reweigh those samples:

IS := Eµtarget[ f (x)]≈
∑

n
i=1 w(xi) f (xi)

∑
n
i=1 w(xi)

,xi ∼ q(x) (2.14)

q(x) is often chosen to minimize the variance of the IS estimator and roughly proportional to
f (x)µtarget(x) (Owen, 2013) while finding such a proposal is challenging in high dimension
space or with a multimodal µtarget.

2.2.5 Annealed Importance Sampling

To alleviate the variance issue in IS, Annealed Importance Sampling (AIS; Neal (2001)) is
proposed to target a sequence of distributions that are (logarithmly) interpolated between the
initial proposal π0 := q and target p := µtarget, where intermediate distribution πk and πk+1

are slightly different. Let L be the length of AIS,

πk(x) : = q(x)
L−k

L p(x)
k
L ,k = 0, ...,L (2.15)
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where πL = µtarget. AIS starts from samples drawn from the initial proposal x(0) ∼ π0(x),
then sequentially targets the intermediate distribution πk until target distribution πL = µtarget,
where the intermediate samples x(k) is produced by running an MCMC (e.g. HMC). Then
we could compute the annealed importance weight along the sequence with xi = x(L−1)

i :

wais(xi) =
π1(x

(0)
i )

π0(x
(0)
i )

π2(x
(1)
i )

π1(x
(1)
i )

...
πL(x

(L−1)
i )

πL−1(x
(L−1)
i )

(2.16)

Plugging wais(x) into Equation 2.14 gives us an AIS estimator.

2.3 Deep Learning

Deep Learning (DL) has been popularly studied in the last decade, which solves many com-
putational problems by utilizing the compression capability of neural networks and arising
the next industrial evolution. Deep Neural Network (DNN), fθ is a mapping parameterized
by a set of parameters θ :

fθ : Rdx → Rdy (2.17)

is learning to approximate a "ground-truth" mapping f which can be computationally expen-
sive.

In this section, we will shift to using DL and DNN for probabilistic modeling and one
specific DNN architecture for many-body systems, before diving into DL-based sampling
methods in the next section.

2.3.1 Energy-based Models

In probabilistic machine learning, we are interested in modeling the distribution of data,
pθ (x). A common way to optimize parameter θ is by maximizing log-likelihood:

θ
∗ = argmax

θ

Epdata [log pθ (x)] (2.18)

which is equivalent to minimize the KL-divergence DKL(pdata∥pθ ).
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One way to parameterize the model is by modeling the energy function Eθ (x), called
Energy-based Models (EBM):

pθ (x) =
exp(−Eθ (x))

Zθ

(2.19)

Zθ =
∫

exp(−Eθ (x))dx (2.20)

where Zθ is an intractable constant w.r.t input x, called partition function. In this way, the
gradient of parameter w.r.t the optimization problem (2.18) could be rewritten as:

∇θEpdata [log pθ (x)] = Epdata [−∇θ Eθ (x)]−Epθ
[−∇θ Eθ (x)] (2.21)

which resembles minimizing a Contrastive Divergence (Song and Kingma, 2021). And Epθ

could be estimated by Monte Carlo, where samples could be drawn by Langevin dynamics
or MALA.

2.3.2 Score-based Models

In many cases, like generative models, we are interested in drawing samples from pθ where
we have access to samples from the true data distribution pdata. Langevin dynamics (2.11) is
efficient to solve this problem. It’s noticeable that Langevin dynamics only requires access to
score (2.2), we could parameterize it instead of energy, leading to another family of models,
Score-based Models (SBM), which is more efficient when simulating the Langevin dynamics
as it avoids computing derivative of energy w.r.t x, i.e. ∇xE(x).
Explicit Score Matching (ESM; Hyvärinen 2007) optimizes the score model sθ (x) towards
the true score S(x) by:

min
θ
Lesm(θ) := Epdata [∥S(x)− sθ (x)∥2] (2.22)

while in most cases we don’t have access to the true scores.
Implicit Score Matching (ISM; Hyvärinen 2007) alternatively minimizes an implicit score
matching objective, which is proven to be equivalent to optimizing ESM (Song et al., 2020a):

min
θ
Lism(θ) : = Epdata[∇x · sθ (x)+

1
2
∥sθ (x)∥2] (2.23)

= Epdata[tr(∇xsθ (x))+
1
2
∥sθ (x)∥2] (2.24)

Lesm(θ) = Lism(θ)+ c (2.25)
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while ISM doesn’t require access to true scores, computing ∇xsθ (x) is computationally
expensive.
Sliced Score Matching (SSM; Song et al. 2020a) reduces expensive computation of ISM by
an idea of random projection on 1d space: If two d-dimensional vector fields (i.e. sθ (x) and
S(x)) are close to each other, then their projection w.r.t. any random projection vector v to a
1D space should be close as well. It leads to an SSM objective:

min
θ
Lssm(θ) :=min

θ

1
2
Ep(v)Epdata(x)[(v

T
∇x log p(x)− vT sθ (x))2] (2.26)

=min
θ

Ep(v)Epdata(x)[v
T

∇x(sθ (x)v)+
1
2
(vT sθ (x))2] (2.27)

which doesn’t require an additional backpropagation to compute ∇xsθ (x).
Denoising Score Matching (DSM; Song and Ermon 2019) estimates scores of perturbed
data x̃∼ pσ (x̃) rather than estimating score of original data distribution like SSM, where

pσ (x̃) =
∫

pdata(x)pσ (x̃|x)dx (2.28)

and qσ (·|·) a perturbation kernel with variance σ2. Then a score network sθ (x) is learned to
target this noisy score, which is roughly approximating the original clean score when σ is
small enough. Thus, we instead optimize the following DSM objective:

min
θ
Ldsm(θ) : =

1
2
Eqσ (x̃)[∥sθ (x̃)−∇x̃ log pσ (x̃)∥2] (2.29)

=
1
2
Epσ (x̃|x)pdata(x)[∥sθ (x̃)−∇x̃ log pσ (x̃|x)∥2] (2.30)

Equation 2.30 can be further simplified with a Gaussian perturbation kernel, pσ (x̃|x) =
N (x̃;xσ2I):

Ldsm(θ) =
1
2
Eqσ (x̃|x)pdata(x)[∥sθ (x̃)+

x̃− x
σ2 ∥

2] (2.31)

DSM provides an efficient way to train an SBM and is highly related to the state-of-the-art
generative models - Diffusion Models (DMs). We’ll further discuss DSM and DMs in the
next section.

2.3.3 E(n) Equivariant Graph Neural Networks

Before diving into DMs, we briefly introduce a neural network architecture that is essential
in modeling many-body system - E(n) Equivariant Graph Neural Networks (EGNN; Satorras
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et al. 2022). In general, given a graph G = (V,E) where vi ∈ V are nodes and ei j ∈ E are
edges, a GNN architecture can be stacked by multiple Graph Convolution Layer (GCL; Kipf
and Welling (2016)), which injects node embeddings from last layer and outputs embeddings
for next layer, i.e. hl+1 = GCL(hl;G). A GCL is defined as

mi j = φe(hl
i,h

l
j,ai j) (2.32)

mi = ∑
j∈N (i)

mi j (2.33)

hl+1
i = φh(hl

i,mi) (2.34)

where hl
i ∈Rd is the d-dimensional embedding of node vi at layer l, ai j are the edge attributes

and N (i) represents the set of neighbors of node vi. Typically, φe and φh are the edge and
node operations respectively, and are commonly parameterized by an MLP. However, the
GCL is not E(n)-equivariant, i.e. for any g ∈ E(n), GCL(g◦hl) ̸= g◦GCL(hl), and therefore
not suitable for many-body system.

Instead, Satorras et al. (2022) proposes a Equivariant Graph Convolution Layer (EGCL)
with hl+1,xl+1 = EGCL(hl,xl), which is defined as

mi j = φe(hl
i,h

l
j,∥xl

i− xl
j∥2,ai j) (2.35)

xl+1 = xl +
1

|V|−1 ∑
i ̸= j

(xl
i− xl

j)φx(mi j) (2.36)

mi = ∑
j ̸=i

mi j (2.37)

hl+1
i = φh(hl

i,mi) (2.38)

where xl are the coordinate embeddings and x0 = x ∈Rn are the coordinates in n-dimensional
space, and φx is also parameterized by a MLP. The EGCL is shown to be E(n)-equivariant,
i.e. for any g ∈ E(n)

(EGCL◦g)(hl,xl) = (g◦EGCL)(hl,xl) (2.39)

2.4 Diffusion Models

In the last two sections, we introduce classical methods for sampling from Boltzmann-
type distribution, which is computationally expensive. Also, we introduce deep learning
for probabilistic modeling - EBMs and SBMs. In this section, we are going to introduce
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Diffusion Models (DMs; Song et al. 2020b), a family of state-of-the-art generative models,
which combines deep learning to solve our second question:

How to speed up sampling by combining deep learning while preserving performance?

Diffusion Models (DMs) consists of two processes (Song et al., 2020b): 1. A forward SDE
(diffusion process) noises a complex, high-dimensional and multimodal target distribution
µtarget = p0 into an easy-to-sample unimodal distribution (or prior); 2. A tractable reverse
SDE (denoising process) starts from that easy-to-sample prior and iteratively recovers a
sample from the target distribution.
Forward SDE can be generally defined by an Ito-SDE, which is well known as diffusion
process (Song et al., 2020b):

dx = f (x, t)dt +g(t)dw (2.40)

where f (x, t) is called drift coefficient, g(t) the diffusion coefficient and w a Wiener process
(Brownian Motion). For simplification, we suppose t ∈ [0,1].
Reverse SDE of the above diffusion process is also a diffusion process (Anderson, 1982):

dx = [ f (x, t)−g2(t)∇x log pt(x)]dt +g(t)dw̃ (2.41)

where pt(x) is the marginal distribution at t, dt an infinitesimal negative timestep and w̃ a
standard Wiener process when time flows backwards from t = 1 to 0.
Generally, DMs are parameterizing a time-dependent score network sθ (x, t), to target the
score of marginal distribution:

St(x) := ∇x log pt(x) (2.42)

which could be plugged into Equation 2.41 to generate samples, i.e.:

dx = [ f (x, t)−g2(t)sθ (xt , t)]dt +g(t)dw̃ (2.43)

In the rest of this section, we will briefly introduce training and sampling of DMs under a
variance-exploding SDE setting for simplification. Discussion about more general forward
SDEs setting can be found in Appendix D.
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2.4.1 Variance Exploding SDEs

Variance Exploding (VE) SDEs define an Ito-SDE with f (x, t)≡ 0 and g(t) =
√

dσ2(t)
dt :

dx =

√
dσ2(t)

dt
dw (2.44)

where σt := σ(t) defines a noise schedule.
Then the conditional distribution of xt |xs is given by Song et al. (2020b):

p(xt |xs,s, t) =N (xt ;xs,(σ
2
t −σ

2
s )I) (2.45)

In this case, given a clean data at t = 0, i.e. x0, xt is perturbed by a Gaussian noise with 0
mean and σ2

t I covariance, leading to following perturbation kernel:

pσt (xt |x0) =N (xt ;x0,σ
2
t I) (2.46)

From henceforth, we denote pσt as pt for simplification. Then, given a noise schedule σ(t)
and data distribution pdata, the marginal distribution pt can be expressed by substituting the
perturbation kernel in Equation 2.28:

pt(xt) =
∫

pdata(x)N (xt ;x,σ2
t I)dx (2.47)

2.4.2 Train DMs

DMs are trained by optimising a DSM loss (2.31) that generalized to a set of time-dependent
perturbation kernels qσt , leading to the following Diffusion Models loss, LDM:

LDM(θ) : = Et∈U [0,1]Epdaata(x0)pt(xt |x0)

[∥∥∥∥sθ (xt , t)−
x0− xt

σ2
t

∥∥∥∥2
]

(2.48)

= Et,x0,xt

[
1

σ4
t

∥∥xt +σ
2
t sθ (xt , t)− x0

∥∥2
]

(2.49)

By Tweedie’s formula (Efron, 2011),

∇x log pt(x) = Ep(x0|xt)

[
x0− xt

σ2
t

]
(2.50)

where p(x0|xt) ∝ pdata(x0)pt(xt |x0) by Bayes rule.
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Therefore, the learning objective (2.49) resembles training a denoiser Dθ (x, t) := x+
σ2

t sθ (x, t) to minimize the expected L2 denoising error, where we can also design any positive
weighting function λ (t) to reweigh loss at t:

LDM(θ ;λ ) = Et,x0,xt

[
λ (t)∥Dθ (xt , t)− x0∥2

]
(2.51)

The parameterization of denoiser Dθ is generalized by Karras et al. (2022), which achieves
state-of-the-art performance in image generation.

2.4.3 Sample from DMs

Once the score network sθ is well trained, we can plug it into Equation 2.41 and have:

dx = g2(t)sθ (x, t)dt +g(t)dw̃ (2.52)

which can be solved by any SDE solversSong et al. (2020b). For example, we can discretize
Equation 2.52 as:

xt−1 = xt +σ
2
t sθ (xt , t)+σtεt , εt ∼N (0, I) (2.53)

which resembles 1-step Langevin dynamics from marginal pt to pt−1.
For deterministic sampling, Song et al. (2020b) shows that given a reverse SDE (2.41),

we can find a probability flow ODE that shares the same marginal distribution pt(x):

dx = { f (x, t)− 1
2

g(t)2
∇x log pt(x)}dt (2.54)

= { f (x, t)− 1
2

g(t)2sθ (x, t)}dt (2.55)

We can solve this probability flow ODE by any ODE solver, like 1st order Euler (Karras et al.,
2022; Song et al., 2020b) or 2nd order Heun (Karras et al., 2022).

2.5 Related Works

In previous sections, we briefly introduce several methods answering the first two questions:
How to sample from a Boltzmann-type distribution? and How to speed up sampling by
combing deep learning while preserving performance?

In this section, we focus on the last question:

How to efficiently sample from a Boltzmann-type distribution with few to 0 data?
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We’ll first detailly introduce Iterated Denoising Energy Matching (iDEM; Akhound-
Sadegh et al. 2024), which is the foundation of our method. Then we’ll briefly introduce
several relevant methods like FAB, DDS, and DIS.

2.5.1 Denoising Energy Matching

We now present the foundation model of our methods - Iterated Denoising Energy Matching
(iDEM; Akhound-Sadegh et al. 2024). From henceforth, we interchangeably use µtarget and
p0 to refer to the target density at time t = 0 and set p1 to denote a tractable prior to time
t = 1.

For a diffusion process defined by a VE-SDE with known noise schedule σ(t), we first
review its marginal distribution at time t, i.e. Equation 2.47. We are going to introduce
usages of Equation 2.47 in two different settings:

Learning from a large dataset & Learning to sample

Learning from a large dataset. When we have access to a large scale dataset, pdata can be
represented by a mixture of Dirac measures over the training dataset, denoted as p0. Then the
marginal distribution pt(xt) can be estimated by an MC estimator, while the corresponding
score can be estimated by an MC estimator as well (by Tweedie’s formula Efron (2011)):

pt(xt) = Ep0[N (xt ;x,σ2
t I)] (2.56)

St(xt) = ∇ logEp0[N (xt ;x,σ2
t I)] = Ep0[−(xt− x)/σ

2
t ] (2.57)

resulting to a simple regression loss described as 2.51, by taking Ep0 out in Ept∥sθ (xt , t)−
St(xt)∥2 when targeting scores at t. Therefore, the DSM loss is simply computed by an MC
estimator over samples from the dataset.
Learning to sample. Now only an unnormalized density, i.e. p0(x) =

exp(−E(x))
Z0

, is available
where the partition function Z0 is a constant w.r.t input x, with few to 0 known samples.
Equation 2.47 can be rewritten as follow:

pt(xt) =
∫ exp(−E(x))

Z0
N (xt ;x,σ2

t I)dx (2.58)

It’s noticeable that N (xt ;x,σ2
t I) can be rewritten as N (x;xt ,σ

2
t I) according to symmetry

of Gaussian. Therefore, the marginal distribution pt and corresponding score St can be
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expressed as follow:

pt(xt) =
1
Z0

EN (x;xt ,σ2
t I)[exp(−E(x))] (2.59)

St(xt) = ∇ log pt(xt) = ∇xt logEN (x;xt ,σ2
t I)[exp(−E(x))] (2.60)

MC score estimator. The above expressions suggest we can use an MC estimator to estimate
St(xt), by first drawing samples around xt (i.e. x(i)0|t ∼ N (x;xt ,σ

2
t I)) then evaluating their

energies and finally operated with ∇ log∑:

St(xt)≈ SK(xt , t) := ∇xt log
K

∑
i=1

exp(−E(x(i)0|t)) (2.61)

To improve numerical stability, the score MC estimator SK(xt , t) is implemented by the
gradient of a LogSumExp operator over the negative energies.
Learning objective of DEM is therefore a simple regression loss defined as:

LDEM(xt , t) := ∥sθ (xt , t)−SK(xt , t)∥2 (2.62)

Notice that we could evaluate the loss given any pair of (xt , t), while the DSM loss (2.51)
requires an expectation over the dataset to recover the marginal score given by Tweedie’s
formula (2.50). This flexibility allows direct score matching without any knowledge of true
data distribution p0, leading to the following DEM loss:

LDEM(θ ;λ ) : = Et,x0,xt [λ (t)∥sθ (xt , t)−SK(xt , t)∥2] (2.63)

where x0 can be sampled from any distribution q rather than from the true data distribution.
Train DEM. Ideally, if x0 is sampled from a distribution q whose support covers the one
of true data distribution, we can keep sampling data from q and evaluate Equation 2.63
to optimize the model; then eventually, the model learns scores for any data point in the
sampling space. However, it’s obviously far from efficient. Akhound-Sadegh et al. (2024)
proposes a bi-level iterative scheme for training DEM similar to Midgley et al. (2023), where
the score network is updated by Equation 2.63 with a buffer in an inner-loop; while the buffer
is updated in an outer-loop .

Inner Loop. The neural sampler (score network) sθ is trained to approximate the score
at different noise levels, i.e. sθ (·, t) for different t, for each data point in the buffer. In
particular, sθ is trained by DEM loss (2.63), which is efficient as its simulation-free
nature.
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Outer Loop. To train the neural sampler sθ better, it is crucial to find informative
points, i.e. those with high probabilities (or low energies, equivalently). It is possible
to use any off-policy methods and MCMC or even MD to generate informative points.
But those methods are typically inefficient. Instead, Akhound-Sadegh et al. (2024)
uses the neural sampler sθ itself to generate informative samples and use a buffer to
utilize previously generated samples. The proposal of sθ can help fast exploration of
the data region, while the inner-loop provides informative direction for exploration in
the next iteration by optimizing Equation 2.63. Iteratively, sθ can generate more and
more informative points and gradually approximate SK(·, t) perfectly.

A complete description of iDEM is given in Algorithm 1.

Algorithm 1 Iterated Denoising Energy Matching

Require: Network sθ , Batch size b, Noise schedule σ2
t , Prior p1, Num. integration steps L,

Replay buffer B, Max Buffer Size |B|, Num. MC samples K
1: while Outer-Loop do do
2: {x1}b

i=1 ∼ p1(x1)
3: {x0}b

i=1← sde.int({x1}b
i=1,sθ ,L) ▷ Sample

4: B = (B∪{x0}b
i=1) ▷ Update Buffer B

5: while Inner-Loop do do
6: x0←B.sample() ▷ Uniform sampling from B
7: t ∼ U(0,1),xt ∼N (x0,σ

2
t )

8: LDEM(xt , t) = ∥SK(xt , t)− sθ (xt , t)∥2

9: θ ← Update(θ ,∇θLDEM)
10: end while
11: end while
Ensure: sθ

Incoorperating Symmetries In many physical problems, the Boltzmann-type distribution is
preserving symmetries of the physical system. For example, if we consider a n−body system
in Rd , where d = 3n, the symmetries correspond to the rotation, translation, and permutation
of the particles, resulting in the target density µtarget (or the energy function E) is invariant to
the product group G = SE(3)×Sn. Given an G-invariant energy function E , its derivative
∇E is G-equivariant and Akhound-Sadegh et al. (2024) proves that the MC score estimator
SK is G-equivariant under certain condition:

Proposition 1 (Akhound-Sadegh et al., 2024) Let G be the product group SE(3)×Sn ↪→
O(3n) and p0 be a G-invariant density in Rd . Then the Monte Carlo score estimator of
SK(xt , t) is G-equivariant if the sampling distribution x0|t ∼ N (x0|t ;xt ,σ

2
t ) is G-invariant,

i.e.,
N (x0|t ;g◦ xt ,σ

2
t ) =N (g−1x0|t ;xt ,σ

2
t ).
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In practice, the SK can be equivariant by replacing the standard normal distribution with a
normal distribution that has zero center of mass.

2.5.2 Other neural samplers

Flow Annealed Importance Sampling Boostrap (FAB, Midgley et al. 2023) uses samples
from AIS to train a discrete normalizing flow using a α = 2 divergence, which is MCMC-
based. In other words, FAB is learning from multiple MCMC trajectories, given by AIS.
Also, FAB is trained by a bi-level iterative scheme as well, where an outer-loop collects
samples and trajectories of AIS; while an inner-loop uses those samples, trajectories, and
their AIS weights to train a model pθ and updates the buffer as well.
Path Integral Sampler (PIS; Zhang and Chen 2022), Denoising Diffusion Sampler (DDS;
Vargas et al. 2023) and time-reversed Diffusion Sampler (DIS; Berner et al. 2024) are
using SDE trajectories to train neural SDE (Tzen and Raginsky, 2019) to sample from the
target distribution. These samplers share a similar idea during training: minimize the KL-
divergence over forward (noising process) trajectories and the backward (denoising process)
ones. The forward trajectories are given by simulating an SDE from the target distribution;
while we can start from a tractable prior and simulate a trainable SDE to generate backward
trajectories. As their nature of learning from trajectories, these methods are simulation-based
and not "off-policy", resulting in expensive training.

2.6 Summary

In this chapter, we sequentially solved three questions around "sampling from Boltzmann-
type distribution": How to sample from a Boltzmann-type distribution?, How to speed up
sampling by combing deep learning while preserving performance? and How to efficiently
sample from a Boltzmann-type distribution with few to 0 data? by reviewing classical
sampling methods, e.g. MCMC (Bishop, 2006), and current neural sampler, e.g. FAB
(Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024). It’s noticeable that iDEM
(Akhound-Sadegh et al., 2024) achieves state-of-the-art performance. However, it still has
several issues behind it, resulting in difficulty when scaling up to more complex problems
like high-dimensional many-body systems. In the next chapter, we’ll introduce our model,
which shares a similar spirit as iDEM (Akhound-Sadegh et al., 2024) while achieving better
performance.



Chapter 3

EnDEM: Energy-based iDEM

In the last chapter, we introduce the goal of this thesis: Efficient sampling from Boltzmann-
type distribution with few to 0 samples, as well as several representative methods. We also
introduce state-of-the-art method, iDEM (Akhound-Sadegh et al., 2024), which outperforms
previous methods like FAB (Midgley et al., 2023), PIS (Zhang and Chen, 2022), DIS
(Betancourt, 2018) and DDS (Vargas et al., 2023).

iDEM (Akhound-Sadegh et al., 2024) uses a novel score estimator as a target, to train
a score-based diffusion models. However, it suffers from two main issues: high bias and
variance of training targets.

First notice that, given by Equation 2.61, the MC score estimator is biased, where
log∑i exp(−E(x(i)0|t)) is noisy and biased while the gradient operator ∇ can amplify those
noisiness and bias. The noisiness of the training target results in less reliable training signals
and difficulty in optimization; while bias can be misleading, and makes the model learn
wrong scores.

To solve these issues, we propose a variant of iDEM based on energy diffusion called
Energy-based iDEM (EnDEM), which targets the noise-convolved energies, Et , instead of
scores St . An illustration of Iterated training of EnDEM is provided in Figure 3.1: similar to
iDEM, EnDEM starts from random initialized time-convolved energies and simulates the
amortised diffusion sampler to generate samples; it iteratievly uses those samples to match
the time-convolved energies and generates new samples for training in next iteration.

In this chapter, we will first introduce the issues of iDEM and review the theoretical
results provided by Akhound-Sadegh et al. (2024). Then, we’ll introduce our methods, by
going through theoretical results first, including error bounds and variance of our target
estimator and comparison with iDEM. It is proven that our method is training with a more
reliable target in terms of its bias and variance. After that, we’ll present experimental results
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(a) Iterated training (b) Ground truth

Fig. 3.1 Illustration of sampling from Boltzmann-type distribution using EnDEM. (a) Contour
lines for predicted target energy at t = 0, i.e. Eθ (x,0); Scatters for buffer samples generated
from a diffusion sampler sθ (xt , t) = ∇xt Eθ (xt , t); ↓ for sampling from the diffusion sampler
and↗ for updating Eθ using buffer samples. (b) Contour lines for ground truth energy E(x).

on several datasets, which show that our method outperforms the current state-of-the-art
model iDEM.

3.1 Probability Error Bound of MC Score Estimator

The MC score estimator is computed by Equation 2.61. We review it here:

SK(xt , t) := ∇xt log
1
K

K

∑
i=1

exp(−E(x(i)0|t)), x(i)0|t ∼N (x;xt ,σ
2
t I)

Notice that the part inside the logarithm, ZK(xt , t) := 1
K ∑

K
i=1 exp(−E(x(i)0|t)), is a MC estimator

which is unbiased; while logarithm of an unbiased estimator results a biased estimator.
Therefore, logZK(xt , t) and ∇ logZK(xt , t) are biased. Akhound-Sadegh et al. (2024) analyzes
the bias of MC score estimator (2.61) by assuming sub-Gaussianess of exp(−E(x(i)0|t)) and

∇exp(−E(x(i)0|t)).

Proposition 2 (Akhound-Sadegh et al., 2024) If exp(−E(x(i)0 |t)) and ∥∇exp(−E(x(i)0|t))∥ are
sub-Gaussian, then, there exists a constant c(xt) such that with probability 1− δ (over
x(i)0|t ∼N (xt ,σ

2
t )) we have

∥SK(xt , t)−∇ log pt(xt)∥ ≤
c(xt) log

( 1
δ

)
√

K
.

Akhound-Sadegh et al. (2024) finds that even if the MC score estimator SK (2.61) is biased, the
neural sampler is still able to generate samples with high mode-coverage; while Proposition
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2 shows a O(1/
√

K) decay rate of the bias of SK . However, when the target distribution is
high-dimensional and complex, the constant c(xt) in Proposition 2 can be large and such that
SK can be problematic.

3.2 MC Energy Estimator

Instead of learning scores, we propose an MC energy estimator and target this estimator with
an energy network Eθ (xt , t), resulting in learning a sequence of annealed energy landscapes
with an energy diffusion.

Recap that the marginal distribution (2.59) can be expressed by:

pt(xt) =
1
Z0

exp(− logEN (x;xt ,σ2
t I)[exp(−E(x))]) (3.1)

Let’s defined an annealed energy at time t, i.e. Et :

Et(x) :=− logEN (x;xt ,σ2
t I)[exp(−E(x))] ∝ pt(xt) (3.2)

where
∫
Et(x)dx = Z0. In this setting, the annealed (or noise-convolved) energies share the

same partition function Z0.
Equation 3.2 suggests a Monte Carlo estimator similar to score’s to approximate the

annealed energy function:

EK(xt , t) : =− log
1
K

K

∑
i=1

exp(−E(x(i)0|t)), x(i)0|t ∼N (x;xt ,σ
2
t I) (3.3)

=− log
K

∑
i=1

exp(−E(x(i)0|t))+ logK (3.4)

where we can similarly use the LogSumExp trick in the implementation and the MC energy
estimator EK and MC score estimator SK follow the definition between energies and scores:

SK(xt , t) =−∇EK(xt , t) (3.5)

3.3 EnDEM

To target the MC energy estimator EK(x, t), we propose the Energy-based iDEM (EnDEM),
which models the annealed energy functions Eθ (x, t) and simulates an energy diffusion for
sampling.
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Training with a regression loss. In this case, we optimize Eθ (xt , t) by minimizing a
regression loss w.r.t the MC energy estimator:

LEnDEM(xt , t) : = ∥Eθ (xt , t)−EK(xt , t)∥2 (3.6)

LEnDEM(θ ;λ ) : = Et,x0,xt [λ (t)∥Eθ (xt , t)−EK(xt , t)∥2] (3.7)

Sampling with an energy diffusion. When generating samples from the learned energies
with a diffusion sampler, we can substitute sθ by −∇Eθ (xt , t) in Equation 2.43:

dx = [ f (x, t)+g2(t)∇Eθ (x, t)]dt +g(t)dw̃ (3.8)

where f (x, t) = 0 and g(t) =
√

dσ2(t)
dt in our VE-SDE setting.

A complete description of EnDEM is provided in Algorithm 2.

Algorithm 2 Energy-based Iterated Denoising Energy Matching

Require: Network Eθ , Batch size b, Noise schedule σ2
t , Prior p1, Num. integration steps L,

Replay buffer B, Max Buffer Size |B|, Num. MC samples K
1: while Outer-Loop do do
2: {x1}b

i=1 ∼ p1(x1)
3: {x0}b

i=1← sde.int({x1}b
i=1,−∇Eθ ,L) ▷ Sample

4: B = (B∪{x0}b
i=1) ▷ Update Buffer B

5: while Inner-Loop do do
6: x0←B.sample() ▷ Uniform sampling from B
7: t ∼ U(0,1),xt ∼N (x0,σ

2
t )

8: LEnDEM(xt , t) = ∥EK(xt , t)−Eθ (xt , t)∥2

9: θ ← Update(θ ,∇θLEnDEM)
10: end while
11: end while
Ensure: sθ

3.4 Variance, Bias and Probability Error Bound of MC
Energy Estimator

To analyze the variance and bias of our MC energy estimator, we follow the same as-
sumption of sub-Gaussianess of exp(−E(x(i)0|t)). Let ZK(xt , t) := 1

K ∑
K
i=1 z(i)0t (xt), where

z0t(xt) = exp(−E(x)) and x is a random variable with density N(x;xt ,σ
2
t I). Then z0t(xt)
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is sub-Gaussian under our assumption. let

m0t(xt) : = E[z0t(xt)] = EN (x;xt ,σ2
t I)[exp(−E(x))] (3.9)

v0t(xt) : = Var(z0t(xt)) = VarN (x;xt ,σ2
t I)(exp(−E(x))) (3.10)

Then the unbiased estimator ZK(xt , t) is also sub-Gaussian with mean m and variance
v0t(xt)/K. Under this setting, m0t(xt) = exp(−Et(xt)). By combining a concentration in-
equality of ZK(xt , t) and adapting our notations, the concentration inequality proposed in 2
can be further expressed by:

∥SK(xt , t)−St(xt)∥ ≤
2
√

2v0t(xt) log( 2
δ
)(1+∥∇Et(xt)∥)

m0t(xt)
√

K
(3.11)

with probability 1−δ (Appendix A.2.1).

3.4.1 Variance, Bias and Concentration Inequality

Now, the MC energy estimator EK is given by the logarithm of an unbiased estimator ZK , i.e.
EK :=− logZK . Applying a 2nd order Taylor expansion and using the sub-Gaussianess of
ZK , we show that (see Appendix B.2):

E[EK(xt , t)] = E logZK(xt , t)≈− logm0t(xt)+
v0t(xt)

2m2
0t(xt)K

(3.12)

Var(EK(xt , t)) = Var(logZK(xt , t))≈
v0t(xt)

m2
0t(xt)K

(3.13)

and with probability 1−δ :

| logZK−E logZK(xt , t)| ≤

√
2v0t(xt) log 2

δ

m0t(xt)
√

K
(3.14)

Also notice that, Equation 3.12 shows that the bias of EK w.r.t its expectation is roughly
v0t(xt)

2m2
0t(xt)K

. While its variance is roughly twice its bias and decays at a rate of O(1/K).

3.4.2 Probability Error Bound

We derive the probability error bound for our energy estimator, i.e. |EK(xt , t)−Et(xt)|, by
leveraging the triangle inequality and the mean and variance of logZK , in the following
proposition:
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Proposition 3 (ours) If exp(−E(x(i)0 |t)) is sub-Gaussian, then with probability 1−δ (over
x(i)0|t ∼N (xt ,σ

2
t )) we have

∥EK(xt , t)−Et(xt)∥ ≤

√
2v0t(xt) log 2

δ

m0t(xt)
√

K
(3.15)

A complete proof is given in Appendix B.3.
Equation 3.15 and Equation 3.11 show that the error bound of EK has a smaller constant

term than the one of SK , meaning that our energy target can be less biased, especially on
regions with steep gradient (i.e. large ∥∇exp(−E(x))∥).

3.5 Why energies can be better than scores?

A question can potentially be asked: Even if you are targeting a less biased estimator, you
need to differentiate it when calculating the scores, and the bias can be amplified again.
Then why don’t you target scores directly? We are now going to ask this question from two
perspectives: variance and bias.
Variance. To compare the variance of the MC energy estimator (3.3) and the score one
(2.61), we derive the (approximated) variance of the MC score estimator in Appendix B.4.
We show that the sum of variances of the elements of SK is larger than the variance of EK .
It means that the MC energy estimator EK can provide more useful and less noisy training
signal than SK , and also can achieve smaller loss during training 1. Especially, in low-energy
regions we derive that

d

∑
j=1

Var(SK(xt , t)[ j])≈
4v0t(xt)(1+∥∇Et(xt)∥)2

m2
0t(xt)K

(3.16)

Therefore, the variance of EK (3.13) can be much smaller in high-energy regions. This is
desirable as most regions correspond to high energy in complex and high-dimensional tasks,
showing the fundamental advantage of targeting EK instead of SK .
Bias. On the other hand, the small bias of EK results in it being a more reliable target
compared with SK . Even if we need to differentiate EK when sampling, which can amplify its
bias back to the same as SK’s, a reliable EK can provide us with more information about the

1Suppose you are training a neural network fθ (x) to target noisy observations y(x) = f (x)+ ε(x) using
a l2 loss, where x ∈ Rd and ε(x) is a random function with 0 mean. Then fθ∗ = f is a minimizer; while the
minimum of loss equals to ∑

d
i=1 σ2

i := ∑
d
i=1Ex[Var(εi(x))]. See proof in Appendix A.1.
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target distribution and its energy landscape. The well-learned annealed energies also allow us
to combine statistical techniques like importance sampling to improve sample quality. Also
in the next chapter, we’ll introduce an improvement of EnDEM based on the learned anneal
energies.

3.6 MC Estimators via Annealed Importance Sampling

A simple way to improve the MC estimators, both Energy and Score ones, is using annealed
importance sampling (AIS; Section 2.2.5).
MC Energy Estimator as an importance-weighted estimate. First notice that the energy
function Et(xt) is actually Z0 log pt(xt), where pt(xt) is derived by Equation 2.58. Then Et(xt)

can be expressed as an expectation over a proposal q(x|xt):

Et(xt) =− log
∫

exp(−E(x))N (xt ;x,σ2
t I)dx (3.17)

=− log
∫

q(x|xt)
exp(−E(x))N (xt ;x,σ2

t I)
q(x|xt)

dx (3.18)

=− logEq(x|xt)

[
exp(−E(x))N (xt ;x,σ2

t I)
q(x|xt)

]
(3.19)

When using a proposal symmetric to the perturbation kernel N (xt ;x,σ2
t I), i.e. q(x|xt) =

N (x;xt ,σ
2
t I), then Equation 3.19 can be simplified as:

Et(xt) =− logEN (x;xt ,σ2
t I)[exp(−E(x))] (3.20)

which suggests the MC energy estimator we proposed in Equation 3.3, and its derivative
recovers the MC score estimator (2.61) in Akhound-Sadegh et al. (2024).

With a general proposal q(x|xt) and samples x(i)0 drawn from this proposal, we can
establish an importance-weighted estimation for Et(xt):

EIS
K (xt , t) : =− log

∑
K
i=1 w(x(i)0 )exp(−E(x(i)0 ))

∑
K
i=1 w(x(i)0 )

(3.21)

w(x) =
N (x;xt ,σ

2
t I)

q(x|xt)
(3.22)

According to Section 2.2.4, when the energy landscape is complex and high-dimensional,
we require an optimal proposal roughly proportional to exp(−E(x))N (xt ;x,σ2

t I) to minimize
the variance of IS estimator. Therefore, the original MC estimators can lead to high variance
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estimation in complex tasks, while sampling from the optimal proposal requires techniques
like MCMC which is expensive.
Improvement with AIS. A possible way to improve the performance of estimators in high
dimensional space is via AIS. Following the previous discussion, we aim to draw samples
by simulating an MCMC over a sequence of intermediate distributions logarithmically
interpolated between the target and the initial proposal. Then, the AIS energy estimator can
be estimated by LogSum of weights of these samples, i.e. EAIS

K =− log 1
K ∑i wi, while the

score one is computed by differentiation, i.e. SAIS
K = ∇ log∑i wi.

We use an initial proposal then the same as before, i.e. π0(x) = q(x) = N (x;xt ,σ
2
t I).

Given the steps of AIS, L, and according to Section 2.2.5, the intermediate distributions
πk can be expressed as follows by plugging q and p(x) ∝ exp(−E(x))N (xt ;x,σ2

t I) into
Equation 2.15:

πk(x) ∝ q(x)1− k
L p(x)

k
L (3.23)

∝N (x;xt ,σ
2
t )exp

(
− k

L
E(x)

)
:= π̃k(x) (3.24)

With K MC samples, we can compute the annealed importance weight of the ith sample as
follows:

wi =
π̃1(x

(i)
0 )

π̃0(x
(i)
0 )

π̃2(x
(i)
1 )

π̃1(x
(i)
1 )
· · ·

π̃L(x
(i)
L−1)

πL−1(x
(i)
L−1)

=
L

∏
k=1

exp
(
−1

L
E(x(i)k−1)

)
(3.25)

where x(i)0 is drawn from π0 = N(x;xt ,σ
2
t ) and x(i)k is by simulating a MCMC from x(i)k−1 to

target πk for k = 1, ...,L−1. In our setting, we stick the MCMC to a HMC. Therefore, we
can establish AIS estimators for both energy and score as follows:

EAIS(L)
K (xt , t) : =− log

1
K

K

∑
i=1

wi (3.26)

=− log
K

∑
i=1

exp

(
−1

L

L

∑
k=1
E(x(i)k−1)

)
+ logK (3.27)

=−LogSumExp

(
−1

L

L

∑
k=1
E(xk−1)

)
+ logK (3.28)

SAIS(L)
K (xt , t) : =−∇xt E

AIS(L)
K (xt , t) (3.29)

= ∇xt LogSumExp

(
−1

L

L

∑
k=1
E(xk−1)

)
(3.30)
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Notice that by setting L = 1, then the AIS estimator recovers the original ones (2.61 and 3.3).
A complete description of computing the AIS estimators is provided in Appendix C.

3.7 Incorporating Symmetries

Similar to iDEM, we consider applying EnDEM in physical systems with symmetry con-
straints like n-body system. Analogous to Proposition 1 proposed by Akhound-Sadegh et al.
(2024), we prove that our MC energy estimator EK is G-invariant under the same condition.

Proposition 4 (ours) Let G be the product group SE(3)× Sn ↪→ O(3n) and p0 be a G-
invariant density in Rd . Then the Monte Carlo energy estimator of EK(xt , t) is G-invariant if
the sampling distribution x0|t ∼N (x0|t ;xt ,σ

2
t ) is G-invariant, i.e.,

N (x0|t ;g◦ xt ,σ
2
t ) =N (g−1x0|t ;xt ,σ

2
t ).

Proposition 4 shows that, when SK is G-equivariant, EK is G-invariant.

3.8 Summary

In this chapter, we introduce our method, EnDEM: Energy-based iDEM, by first providing
the motivations and methodology. Then we theoretically discuss the advantage of targeting
the annealed (or time-convolved) energies instead of scores, showing that the energy targets
provide us more useful and less noisy training signal as well as have the potential to leverage
statistical techniques for higher-quality samples.

On the other hand, we show that the original MC energy estimators (3.3) can be expressed
as logarithm of an IS estimator (3.19), leading to an improvement (3.27 and 3.29) for
both the energy and score estimators via AIS. Besides, EK can be G-invariant when SK

is G-equivariant, suggesting that we can simply replace the training target for many-body
systems.

Before presenting the experimental results in Chapter 5, we’ll introduce an improvement
of EnDEM via Bootstrap Energy Estimation in the next chapter.



Chapter 4

BEnDEM: EnDEM with Bootstrap
Energy Estimation

In the last chapter, we propose EnDEM, which trains an energy network Eθ to target an
estimator with less bias and variance. Even though EnDEM can be more expensive than
DEM when simulating the reverse SDE, as a consequence of differentiating x over Eθ , it
allows us more ways to improve performance based on the learned anneal energies. In this
chapter, we seek to alleviate the high variance of targets when t is large in a bootstrapping
way.

Notice that we use a variance exploding noising process in our setting, where x0 is noised
by adding a 0 mean noise with variance σ2

t at t, i.e. xt = x0 +σtε,ε ∼ N (0, I). Since
the noise schedule σ(t) is not bounded, the variance of xt can be large when t increases.
Therefore, the MC estimators can be very noisy at large t, resulting in useless training signals.
In common generative tasks like image generation, the value of each pixel is known to
range in [0,255]. Then we can normalize them to [−1,1], and apply a noising process with
continuous time t ∈ [0,1] to train a DM. The performance of DM is promising in this setting
(Karras et al., 2022). While in some physical problems, it is often the case that the data
region is unknown and we can’t normalize them (Gee et al., 1997; Sarmadi et al., 2023). In
this circumstance, we need to noise the data with larger σ(t) (or equivalently, the same σ(t)
but with a larger time range [0,T ]) to ensure the target distribution is mixed to the tractable
prior, resulting to the problem of high variance of training target in EnDEM and DEM we
mentioned previously.

An intuitive idea is using bootstrap energy estimation to reduce the variance of the
estimator. Suppose the energy model Eθ fits well at time s, where σ2

s is not large and
EK(xs,s) can provide useful training signals. Then the energy estimator at (xt , t) can be
bootstrapped from the learned energy at s. Analogous to Equation 3.3, we sample x(i)s|t around
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xt with variance of scale σ2
t −σ2

s . Therefore, the variance of the target at t can be reduced
by σ2

s . Therefore, we can use such bootstrapped energy, instead of EK , as the target of
(xt , t). Sequentially, we can use a set of time splits 0 = t0 < t1 < ... < tN = T , where we train
the energy network as useful for t ∈ [t0, t1] while targeting the modified energy estimator
bootstrapped from last time split (i.e. tn−1) for t ∈ [tn−1, tn] for n = 1, ...,N.

While there is obviously no free lunch since the neural network can not perfectly learn
(even though your network is powerful enough, its training targets are still noisy), and will
produce errors in prediction. These inductive biases can be accumulated through the chain of
bootstrapping, resulting in high bias of the training targets. Therefore, the design of time
splits can be shown as a Variance-Bias trade-off, where a frequent bootstrapping strategy can
reduce variance but introduce bias.

In this chapter, we will first propose and introduce our method, Bootstrap EnDEM
(BEnDEM), providing a conceptual overview. Then we’ll discuss the Variance-Bias trade-off
for the bootstrapping method, from the perspective of a sequential energy estimator. At
the end, we will discuss the ablation models for both EnDEM and BEnDEM which target
the score estimators the same as iDEM but use a score network and result in learning the
smoothed annealed energies.

4.1 BEnDEM

4.1.1 Bootstrap Energy Estimation

Suppose 0≤ s < t ≤ T , given a noise schedule σ(t) defined by a VE SDE, we have σs < σt

and xt |xs ∼N (x;xs,(σ
2
t −σ2

s )I). The marginal distribution pt can be obtained by integrating
out xs over the joint distribution p(xs,xt)

pt(xt) =
∫

ps(xs)N
(
xt ;xs,(σ

2
t −σ

2
s )I
)

dxs (4.1)

=
∫ exp(−Es(xs))

Zs
N (xt ;xs,(σ

2
t −σ

2
s )I)dxs (4.2)
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where Es is defined by Equation 3.2 and Zs =
∫

exp(−Es(xs))ds = Z0. Therefore, analogous
to Equation 2.58 and Equation 3.2 we have

pt(xt) =
∫ exp(−Es(xs))

Z0
N (xt ;xs,(σ

2
t −σ

2
s )I)dxs (4.3)

Et(xt) =− logEN (x;xs,(σ2
t −σ2

s )I)
[exp(−Es(x))] (4.4)

≈− log
1
K

K

∑
i=1

exp(−Es(x
(i)
s|t )), x(i)s|t ∼N (x;xs,(σ

2
t −σ

2
s )I) (4.5)

Equation 4.5 suggests an energy estimator bootstrapped from time s for smaller variance.
Though we don’t directly have access to Es(x), we can use our energy network Eθ (x,s) as
an approximation if it fits well at s. Therefore, we propose the Bootstrap Energy Estimator
EK(xt , t,s;φ) and corresponding bootstrapping loss LBEnDEM(xt , t) as follows:

EK(xt , t,s;φ) : =− log
1
K

K

∑
i=1

exp(−Eφ (x
(i)
s|t ,s)), x(i)s|t ∼N (x;xs,(σ

2
t −σ

2
s )I) (4.6)

=− log
K

∑
i=1

exp(−Eφ (x
(i)
s|t ,s))+ logK (4.7)

LBEnDEM(xt , t) = ∥Eθ (xt , t)−EK(xt , t,s;φ)∥2 (4.8)

where φ is the parameter with stopping-gradient; and Eφ refers to a teacher network in terms
of distillation and can be either another pre-trained energy network or itself denoted by θ−.
For simplification, we define EK(xt , t,0;φ) as the MC energy estimator, i.e.

EK(xt , t,0;φ) := EK(xt , t),∀φ (4.9)

4.1.2 Geometrical Bootstrap Schedule

The VE SDE with a geometrical noise schedule is given by Karras et al. (2022) as:

σ(t) = σmin

(
(
σmax

σmin
)2t−1

)0.5

(4.10)

where σmin and σmax are predefined and typically σmax/σmin is very large, e.g. 1.0/0.0001.
This noise schedule results in the variance of added noise being geometrically increased
across time t. Notice that the success of bootstrap energy estimation is based on variance
control, i.e. we should always target a low variance target then the learned energy will
be bootstrapped as another low-variance training target for a longer time. Therefore, we
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propose a Geometrical Bootstrap schedule, which controls the variance of perturbation kernel
p(xt |xs) used for bootstrapping under a predefined level. Given a variance-control level β ,
the Geometrical Bootstrap schedule returns N + 1 time splits t0, ..., tN of time range [0,1]
with

N =

⌈
σ2

max−2σ2
min

β

⌉
(4.11)

tn =
1

2log(σmax/σmin)
log
(

nβ

σ2
min

+2
)

(4.12)

by solving σ2
tn−σ2

tn−1
= β , σ2

t0 = σ2
min, tN = 1 and σ2

tN = σ2
max−σ2

min. In practice, we treat
EK(xt , t, t0;φ) as EK(xt , t,0;φ) since we t0 is very close to 0, and we set tN = min(1, tN) to
preserve the time range boundary.

4.2 Training BEnDEM

The bootstrap energy estimation at t can be accurate only when the annealed energy at s is
well-learned. Therefore, we need to sequentially learn energy at small t using the original
MC energy estimator, then refine the estimator using bootstrap for large t. In terms of time
splits 0 = t0 < ... < tN = 1, we need to sequentially learn the annealed energies in the time
range [tn−1, tn] for n = 1, ...,N.

Given a time split tn, and suppose the annealed energy for time in [0, tn] is well learnt, we
train the energy network Eθ for t ∈ [tn, tn+1] by targeting the bootstrap energy estimator from
s ∈ [tn−1, tn], resulting to following loss:

LBEnDEM(n,θ ;λ ) := Et,s,x0,xt

[
λ (t)∥Eθ (xt , t)−EK(xt , t,s;φ)∥2

]
(4.13)

where t ∼U [tn, tn+1], s∼U [tn−1, tn] and n = 0, ...,N−1. And we set U [t−1, t0] to be δ (0), i.e.
starting from the MC energy estimator (3.3). However, such a training scheme is inefficient
as it requires sequentially appending the time range from [t0, t1] until [t0, tN ] = [0,1], and in
the nth iteration we need to compute a loss ∑

n
i=1LBEnDEM(i,θ ;λ ). To improve efficiency, we

return to t ∼U [0,1] as DMs, by leveraging a weighting function w(n) related to the loss in
the last time interval [tn−1, tn]. Ideally, when Eθ in [tn−1, tn] is not well trained, i.e. a high
loss in this range, the weighting function returns a low value that ignores the training signal
provided by the Bootstrap energy estimator. Therefore we have

LBEnDEM(θ ;λ ) := Et,s,x0,xt

[
w(n)λ (t)∥Eθ (xt , t)−EK(xt , t,s;φ)∥2

]
(4.14)
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where t ∈U [0,1] and n = n(t) := arg{i : ti−1 ≤ t ≤ ti}; and given a t, we first determine its
interval [tn, tn+1] and corresponding index n, then s is uniformly sampled from [tn−1, tn] and
w(n) can be predefined or determined by loss at s.

Notice that, losses at s can describe the quality of training and therefore we can utilize it
as signals for bootstrapping. In practice, we first evaluate the previous model Eθ at s and t
respectively, and without gradients. We compute the losses ls and lt w.r.t targeting EK(x,s)
and EK(x, t), and their ratio rst := ls/lt . Ideally, the target at s has a smaller variance than t
and therefore rst > 1 if the model is well trained at s. Thus, we have: when Eθ (x,s) is well
trained, rst will be small and we should use bootstrapping; otherwise, rst would be ranged
from 0 to 1, and we can use a probability of rst to accept "using Bootstrap estimator". Also,
we stick to using the last step model with a stopping gradient, denoted as θ−, to compute
the bootstrap estimator. Algorithm 3 describes a complete inner-loop of BEnDEM training,
while its outer-loop follows Algorithm 2.

Algorithm 3 Bootstrap Energy-based iDEM training

Require: Network Eθ , Batch size b, Noise schedule σ2
t , Replay buffer B, Num. MC samples

K
1: while Inner-Loop do do
2: x0←B.sample() ▷ Uniform sampling from B
3: t ∼ U(0,1),xt ∼N (x0,σ

2
t )

4: n← arg{i : t ∈ [ti, ti+1]} ▷ Identify the time split range of t
5: s∼ U(tn−1, tn),xs ∼N (x0,σ

2
s )

6: ls←∥EK(xs,s)−Eθ (xs,s)∥2

7: lt ←∥EK(xt , t)−Eθ (xt , t)∥2

8: α ← ls/lt
9: with probability α ,

10: LBEnDEM(xt , t) = ∥EK(xt , t,s;θ−)−Eθ (xt , t)∥2

11: Otherwise, ▷ Use MC estimator if the model is not well trained
12: LBEnDEM(xt , t) = ∥EK(xt , t)−Eθ (xt , t)∥2

13: θ ← Update(θ ,∇θLBEnDEM)
14: end while
Ensure: Eθ
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4.3 Variance-Bias trade-off: a Sequential Estimator per-
spective

BEnDEM can reduce the variance of the target while introducing more bias because of
error accumulation, by intuition. In this section, we theoretically discuss this variance-bias
trade-off, by leveraging a sequential MC energy estimator.

4.3.1 Sequential MC Energy Estimator

The MC energy estimator is given in Equation 3.3, while its mean, variance and bias are
given in Equation 3.12 and 3.13, by assuming sub-Gaussianness of exp(−E(x)) with mean
and variance defined by Equation 3.9 and 3.10. We first review these equations as follows:

m0t(xt) = EN (x;xt ,σ2
t I)[exp(−E(x))]

v0t(xt) = VarN (x;xt ,σ2
t I)(exp(−E(x)))

EK(xt , t) =− log
1
K

K

∑
i=1

exp(−E(x(i)0|t)), x(i)0|t ∼N (x;xt ,σ
2
t )

E[EK(xt , t)] =− logm0t(xt)+
v0t(xt)

2m2
0t(xt)K

= Et(xt)+
v0t(xt)

2m2
0t(xt)K

Var(EK(xt , t)) =
v0t(xt)

m2
0t(xt)K

While Equation 4.4 suggests an MC energy estimator at t bootstrapped from energy Es from s,
where Es(x) can be estimated by the original MC energy estimator, resulting to the following
Sequential MC energy estimator:

ESeq
K (xt , t) : =− log

1
K

K

∑
i=1

exp(−EK(x
(i)
s|t ,s)), x(i)s|t ∼N (x;xt ,(σ

2
t −σ

2
s )I) (4.15)

=− log
1
K

K

∑
i=1

1
K

K

∑
j=1

exp(−E(x(i j)
0|s )) (4.16)
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where x(i j)
0|s ∼N (x;x(i)s|t ,σ

2
s I) and x(i)s|t ∼N (x;xt ,(σ

2
t −σ2

s )I). By the property of Gaussian,
the Sequential MC energy estimator is equivalent to

ESeq
K (xt , t) =− log

1
K2

K

∑
i=1

K

∑
j=1

exp(−E(x(i j)
0|t )), x(i j)

0|t ∼N (x;xt ,σ
2
t I) (4.17)

which is the original MC energy estimator with K2 MC samples, i.e. ESeq
K (xt , t) = EK2(xt , t).

And we can obtain its mean and variance by plugging K2 into Equation 3.12 and 3.13.

4.3.2 Bootstrap(1) Energy Estimator

A sequential MC energy estimator can be viewed as squaring the MC samples of the original
estimator, resulting in a quadratic decay rate of variance and bias w.r.t the Num. of MC
sample K. However, it is obviously trading computation for performance which is inefficient.
Instead, if we can compress the information at s, i.e. learn a powerful neural network can
output the Es end-to-end without K evaluations of the energy function , then we can evaluate
K times of this neural network instead of evaluating K2 times of E , resembling a Bootstrap
MC Energy Estimator (4.6). We now consider the one bootstrapped once from s to estimate
Et , where Es(x) is predicted by an energy network Eθ (x,s) by learning from the original
estimator EK(x,s), i.e.

EB(1)
K (xt , t,s;φ) : =− log

1
K

K

∑
i=1

exp(−Eφ (x
(i)
s|t ,s)), x(i)s|t ∼N (x;xt ,(σ

2
t −σ

2
s )I) (4.18)

Ideally, the Bootstrapping energy estimator is equivalent to the Sequential estimator, resulting
in 1/K smaller variance and bias compared with EK . However, the inductive bias of neural
networks can introduce extra bias.

Since the training target of Eθ (x,s) is noisy, whose mean and variance are given by
Equation 3.12 and 3.13. Suppose we are using l2 loss and have a perfect optimizer. Then
the optimal energy network returns Eφ∗(xs,s) = E[EK(xs,s)], with an expected loss equals to
Var(EK(xs,s)), therefore

EB(1)
K (xt , t,s;φ

∗) =− log
1
K

K

∑
i=1

exp

−
− logm0s(x

(i)
s|t )+

v0s(x
(i)
s|t )

2m2
0s(x

(i)
s|t )K

 (4.19)

=− log
1
K

K

∑
i=1

m0s(x
(i)
s|t )− log

1
K

K

∑
i=1

exp

− v0s(x
(i)
s|t )

2m2
0s(x

(i)
s|t )K

 (4.20)
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where x(i)s|t ∼N (x;xt ,(σ
2
t −σ2

s )I). We further link the Bootstrap energy estimator and the
Sequential one by assuming a large K and σ2

t −σ2
s is small:

EB(1)
K (xt , t,s;φ

∗)≈ ESeq
K (xt , t)− log

1
K

K

∑
i=1

exp

− v0s(x
(i)
s|t )

2m2
0s(x

(i)
s|t )K

 (4.21)

E[EB(1)
K (xt , t,s;φ

∗)]≈ Et(xt)+
v0t(xt)

2m2
0t(xt)K2 +

v0s(xt)

2m2
0s(xt)K

(4.22)

the first assumption is trivial, and the second one is reasonable as well since we always have
a variance-control level β in our bootstrap setting. Therefore, the optimal energy network
obtained by targeting the Bootstrap estimator (4.6) is Eθ∗(xt , t) = E[EB(1)

K (xt , t,s;φ∗)], which
includes two terms of bias:

1. v0t(xt)

2m2
0t(xt)K2 : the bias of a Sequential energy estimator, with a quadratic decay rate.

2. v0s(xt)

2m2
0s(xt)K

: the bias introduced by the inductive bias of neural network, which depends
on the bootstrapped time s and the corresponding statistics v0s and m0s.

A complete proof of Equation 4.21 and 4.22 are given in Appendix B.6.1.
Therefore, a Bootstrap(1) estimator can outperform the MC energy estimator in two

perspectives:
Variance. It’s trivial that the variance of the Bootstrap energy estimator is smaller than that
of the original estimator, especially when t is large. Therefore the Bootstrap energy estimator
can provide more useful and less noisy training signals.
Bias. Equation 4.22 shows the bias of Bootstrap energy estimator. In practice, we’re not
using the same K for different estimators, since evaluating the neural network can be as
expensive as evaluating E . Suppose we use K1 MC samples for the MC energy estimator EK1 ,
then we can choose K2 MC samples for the bootstrap one EB(1)

K2
to ensure no amplified bias,

where

K2 >
1

1− (v0s/m2
0s)/(v0t/m2

0t)
(4.23)

4.3.3 Bootstrap(n) Energy Estimator

In general, we care about the performance of an estimator bootstrapped n∈ {0,1,2, ...,N−1}
times given a bootstrap schedule 0 = t0 < ... < tN = 1. We define a Bootstrap(n) estimator as
follow:
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Definition 1 (Bootstrap(n) Energy Estimator) Given time splits 0 = t0 < ...tN < 1, Eθ :
Rd× [0,1]→R and n∈{0, ...,N−1}, for ∀(xt , t,s)∈R× [tn, tn+1]× [tn−1, tn] , a Bootstrap(n)
estimator is defined as:

EB(n)
K (xt , t,s;θ) : =− log

1
K

K

∑
i=1

exp(−Eθ (x
(i)
s|t ,s)) (4.24)

where x(i)s|t ∼N (x;xt ,(σ
2
t −σ2

s )I) and with initial condition

EB(0)
K (xt , t,s;θ) : = EK(xt , t),∀θ ∈Θ,∀s ∈ R (4.25)

Then the optimal value of the energy network trained by Bootstrap energy estimation is given
by the following Proposition 5:

Proposition 5 Given time splits 0 = t0 < t1 < ... < tN = 1, n ∈ {0, ...,N} and a neural
network Eθ . For any fixed trajectory {si}n

i=0 with si ∈ [ti−1, ti] and s0 = 0, if Eθ is optimal
for any u≤ tn by sequentially optimising

θ
(i) = argmin

θ
∥Eθ (xu,u)−EB(i)

K (xu,u,si;θ
(i−1))∥2 (4.26)

for ∀i ∈ {0, ...,n−1} and ∀u ∈ [ti, ti+1], then for ∀(xt , t) ∈Rd× [tn, tn+1], the neural network
optimized by targeting EB(n)

K (xt , t,sn;θ (n−1)) has the optimal value:

E
θ (n)(xt , t) = Et(xt)+

n+1

∑
j=1

v0,s j(xt)

2m2
0,s j

(xt)K j (4.27)

where sn+1 = t. Especially, when n = 0 it resembles the optimal values by targeting the MC
energy estimator (3.3), i.e.

E
θ (0)(xt , t) = Et(xt)+

v0t(xt)

2m2
0t(xt)K

(4.28)

A complete proof can be found in Appendix B.6.2. Proposition 5 realizes that the bias of the
optimal network trained by Bootstrap Energy Estimator can be composed into two terms:

1. v0t(xt)

2m2
0t(xt)Kn+1 : the bias of a Sequential(n) energy estimator, with a geometric decay rate.

2. ∑
n
j=1

v0,s j (xt)

2m2
0,s j

(xt)K j : the accumulated bias introduced by bootstrapping
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while Proposition 5 also suggests that the variance of our training target can be roughly
expressed as:

Var(EB(n)
K )(xt , t,sn;θ

(n−1))≈ v0t(xt)

m2
0t(xt)Kn+1 (4.29)

which is geometrically reduced compared with the MC Energy estimator (3.3). Therefore,
BEnDEM can be realized as a variance-bias trade-off of its training target.

Also, since we have the bias of a Bootstrap(n) energy estimator, we can choose a Kn+1

such that:

n+1

∑
i=1

v0,si(xt)

2m2
0,si

(xt)∏
i
j=1 K j

<
v0t(xt)

2m2
0t(xt)K1

(4.30)

⇔Kn+1 >
1

∏
n
i=2 Ki−

m2
0t(xt)

v0t(xt)
∑

n
i=1

v0,si(xt)

m2
0,si

(xt)
∏

n
j=i+1 K j

, n≥ 1 (4.31)

to ensure no extra bias, suppose {Ki}n
i=1 are given and we define ∏

m−1
j=m K j = 1, ∀m ∈ Z.

4.4 Summary

In this chapter, we introduce BEnDEM, which improves EnDEM by using self-bootstrapping
energy estimation to trade accumulated bias and variance of the target. We first provide a way
for training such as a Bootstrapping-based model, which avoids inefficient sequential training.
In the end, we theoretically discuss the variance-bias trade-off of BEnDEM, showing that
a Bootstrap(n) estimator can reduce the variance of learning target geometrically while
introducing accumulated bias. Figure 4.1 illustrates the difference between DEM, EnDEM,
and Bootstrap EnDEM.

In the next chapter, we’re going to present the experimental results of both EnDEM and
BEnDEM on various datasets, showing the capacity of our methods.



38 BEnDEM: EnDEM with Bootstrap Energy Estimation

Fig. 4.1 Three methods for sampling from Boltzmann-type distribution leveraging diffusion
models. • and • represent samples for estimators;↖ for estimated scores; light cones, i.e. ▲
and ▲, for variance of scores; and the green curve represents trained energy model outputs.
Lelf: DEM regresses to a consistent MC score estimator and the trained neural network can
be injected into a reverse SDE integration for sampling directly. Middle: EnDEM regresses
to a consistent MC energy estimator which is less noisy and allows evaluating the convolved
energy, while the trained energy network requires additional differentiation to compute scores.
Right: Bootstrap EnDEM proposes an energy estimator bootstrapped from time s instead of
0, resulting in less noisy targets when t is large.



Chapter 5

Experiments and Results

In this chapter, we describe how to evaluate our methods, EnDEM and BEnDEM, on several
datasets and compare them with the baseline model iDEM (Akhound-Sadegh et al., 2024).
We’ll describe the dataset and evaluation metrics before presenting the results in the next
chapter. Also for the ablation study, we conduct experiments on training a (bootstrap or not)
energy network in an iDEM style, which will be described in Section 5.3. Then we will
describe the details of the model setting in each dataset. At the end, we will present the
experimental results as well as comparison and discussion about our models.

5.1 Datasets

In this section, we’ll describe 2 different datasets used for our experiments: GMM-40 and
DW-4. While two other datasets, LJ-13 and LJ-55 are provided in Appendix G.
GMM. A Gaussian Mixture density in 2-dimensional space with 40 modes, which is proposed
by Midgley et al. (2023). Each mode in this density is evenly weighted, with identical
covariances,

Σ =

(
40 0
0 40

)
(5.1)

and the means {µi}40
i=1 are uniformly sampled from [−40,40]2, i.e.

pgmm(x) =
1

40

40

∑
i=1
N (x; µi,Σ) (5.2)
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Then its energy is defined by the negative-log-likelihood, i.e.

EGMM(x) =− log pgmm(x) (5.3)

For evaluation, we sample 1000 data from this GMM with TORCH.RANDOM.SEED(0)
following Akhound-Sadegh et al. (2024); Midgley et al. (2023) as a test set.
DW-4. First introduced by Köhler et al. (2020), the DW-4 dataset describes a system with 4
particles in 2-dimensional space, resulting in a task with dimensionality d = 8. The energy
of the system is given by the double-well potential based on pairwise Euclidean distances of
the particles,

EDW (x) =
1

2τ
∑
i j

a(di j−d0)+b(di j−d0)
2 + c(di j−d0)

4 (5.4)

where a, b, c and d0 are chosen design parameters of the system, τ the dimensionless
temperature and di j = ∥xi− x j∥2 are Euclidean distance between two particles. Following
Akhound-Sadegh et al. (2024), we set a = 0, b =−4, c = 0.9 d0 = 4 and τ = 1, and we use
validation and test set from the MCMC samples in Klein et al. (2023) as the “Ground truth”
samples for evaluating.

5.2 Evaluation Metrics

Negative Log Likelihood (NLL). The negative log-likelihood is a classical metric measuring
how likely a test dataset is under a model, i.e. − log pmodel(Dtest). For score-based diffusion
models, we can numerically compute the NLL by an ODE, while an energy-based diffusion
model allows us to direct unnormalized density computation and approximate the log partition
function by Monte Carlo. While in our experiments, we follow the setting used by Akhound-
Sadegh et al. (2024), which computes the exact likelihood from a continuous normalizing
flow (CNF) model and is shown to be a relatively good estimator. The CNF is trained by an
optimal transport flow matching on samples from each model (OT-CFM) (Tong et al., 2024).
Under this setting, we can compare the sample quality of various model architectures fairly
using the same model architecture, training regime, and numerical likelihood approximation
independent of the sampler form. Then given a test sample x, its likelihood can be estimated
as

log pmodel(x) = log pprior(x)+
∫ 0

1
−Tr(

d f
dxt

)dt (5.5)
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where x(t) = x1−
∫ 0

1 f (t,x)dt and f : [0,1]×Rd → Rd the flow function.
2-Wasserstein distanceW2. Given empirical samples µ from the sampler and ground truth
samples ν , the 2-Wasserstein distance is defined as:

W2(µ,ν) = (infπ

∫
π(x,y)d2(x,y)dxdy)

1
2 (5.6)

where π is the transport plan with marginals constrained to µ and ν respectively. Following
Akhound-Sadegh et al. (2024), we use the Hungarian algorithm as implemented in the
Python optimal transport package (POT) (Flamary et al., 2021) to solve this optimization for
discrete samples with the Euclidean distance d(x,y) = ∥x− y∥2. For low-dimensional data,
we compute the dataW2 by simply binning the data; while for high-dimensional ones, we
instead compute theW2 based on interatomic distances, i.e. distances between the nuclei of
atoms in a molecule or crystal.
Effective Sample Size (ESS). This metric measures the quality and efficiency of a set
of weighted samples. It quantifies the number of independent and identically distributed
(i.i.d.) samples that would be needed to achieve the same level of estimation accuracy as the
weighted samples. ESS is defined as

ESS =
1

n∑
n
i=1 w̃2

i
=

(∑n
i=1 wi)

2

n∑
n
i=1 w2

i
∈ [

1
n
,1] (5.7)

where w̃i =
wi

∑
n
j=1 w j

and wi = exp(−E(xi))/pmodel(xi).
Total Variation (TV). The total variation measures the dissimilarity between two probability
distributions. It quantifies the maximum difference between the probabilities assigned to
the same event by two distributions, thereby providing a sense of how distinguishable the
distributions are. Given two distribution P and Q, with densities p and q, over the same
sample space Ω, the TV distance is defined as

TV (P,Q) =
1
2

∫
Ω

|p(x)−q(x)|dx (5.8)

Following Akhound-Sadegh et al. (2024), for low-dimentional datasets like GMM, we use
200 bins in each dimension. While for larger equivariant datasets, the total variation distance
is computed over the distribution of the interatomic distances of the particles.
Log Partition Function (logZ). To estimate logZ, Akhound-Sadegh et al. (2024) uses an
importance sampling where the proposal is given by the OT-CMF model, i.e. q(x)= pmodel(x).
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Then

logZ = logEq(x)

[
exp(−E(x))

q(x)

]
(5.9)

≥ Eq(x) log
[

exp(−E(x))
q(x)

]
= Eq(x)[−E(x)− log pmodel(x)] (5.10)

which yields a lower bound of logZ. Therefore, we favor the sampler with the largest logZ
estimation.

5.3 Ablation Models

Notice that our methods, EnDEM and BEnDEM, are different from iDEM since they model
an energy network to target an energy estimator. For the ablation study, one can use the score
estimator to train an energy network, similar to the ones using denoising score matching
target to train an EBM (Salimans and Ho, 2021).

5.3.1 DEM-EN: DEM with Energy Network

Using the score estimator to train an energy network Eθ is simply changing the model sθ in
Equation 2.63 into −∇xEθ (x, t). To preserve conservative, we also targets the system energy
E for t = 0 as a regularizor, i.e.

LDEM-EN(θ ;λ ) : = Et,x0,xt [λ (t)∥−∇xEθ (xt , t)−SK(xt , t)∥2 +α∥Eθ (x0,0)−E(x0)∥2]

(5.11)

while its first term can be further expressed as follows by plugging Equation 2.61:

Et,x0,xt

λ (t)

∥∥∥∥∥∇x

(
Eθ (xt , t)+ log

K

∑
i=1

exp(−E(x(i)0|t))

)∥∥∥∥∥
2
 (5.12)

=Et,x0,xt

[
λ (t)∥∇x (Eθ (xt , t)−EK(xt , t))∥2

]
(5.13)

where x(i)0|t ∼N (x;xt ,σ
2
t I).

5.3.2 BDEM-EN: DEM-EN with Bootstrap Energy Estimation

Analogous to EnDEM to BEnDEM, we hereby propose another ablation study that improves
the DEM-EN via Bootstrap Energy Estimation. Similarly, we rewrite the loss of BEnDEM
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(4.14) to target Bootstrapped scores, i.e.

LBDEM-EN(θ ;λ ) : = Et,s,x0,xt

[
w(n)λ (t)∥∇Eθ (xt , t)−∇EK(xt , t,s;φ)∥2

]
(5.14)

= Et,s,x0,xt

[
w(n)λ (t)∥∇(Eθ (xt , t)−EK(xt , t,s;φ))∥2

]
(5.15)

However, it can be computationally expensive since we target a bootstrapped score computed
by differentiating the output of a neural network, though we can compute as Equation 5.15
for acceleration.

5.4 Experiment Settings

Setup. In this section, we describe the settings and hyper-parameters used for different
tasks, i.e. GMM, DW-4, LJ-13, and LJ-15. These settings and hyper-parameters mainly
follow the ones proposed by Akhound-Sadegh et al. (2024). We combine our implemen-
tation of EnDEM, BEnDEM, DEM-EN, and BDEM-EN with the DEM repo released by
Akhound-Sadegh et al. (2024). Our codes are implemented in PyTorch; all neural networks
are optimized using Adam; all experiments are run on NVIDIA A100 GPUs with 40GB of
VRAM. Besides, all noising schedules are variance exploding and based on Equation 4.10,
therefore we tune σmin and σmax for different tasks.

Basic Neural Network: Score-based v.s. Energy-based. For a fair comparison, we
should use similar model sizes for both score-based model (iDEM) and energy-based ones
(EnDEM, BEnDEM, DEM-EN, and BDEM-EN). Also, for equivariant systems, the model
output of a score network is equivariant, while that of an energy network should be invariant.
Therefore, suppose we define a score network using an architecture fθ , i.e. sθ (x, t) = fθ (x, t),
we define our energy network as Eθ (x, t) = fθ (x, t).sum()+ c, where c is a learnable scalar.
Therefore, the energy network is only 1 parameter more than the score network and is also
invariant of inputs. We then name fθ to be the basic model in the rest of this section. Without
statements, the score network and energy network are parameterized as above.

GMM-40. For the basic model fθ , we use an MLP with sinusoidal and positional embed-
dings which has 3 layers of size 128 as well as positional embeddings of size 128. The replay
buffer is set to a maximum length 10000.

During training, the generated data was in the range [−1,1] so to calculate the energy it
was scaled appropriately by unnormalizing by a factor of 50. All models are trained with a
geometric noise schedule with σmin = 1e−5, σmax = 1, K = 500 samples for computing both
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the MC score estimator SK and MC energy estimator EK , K = 400 samples for computing
the Bootstrap energy estimator EB

K and Bootstrap score estimator SB
K = ∇EB

K and we clipped
the norm of SK and SB

K to 70. All models are trained with a learning rate of 5e− 4. To
stabilize EnDEM and BEnDEM training, we clip the generated samples into [−2,2] for each
dimension to avoid learning extreme values of energy. For fairness, we employ this clipping
strategy for all models.

DW-4. All models use an EGNN with 3 message-passing layers and a 2-hidden layer
MLP of size 128. All models are trained with a geometric noise schedule with σmin = 1e−5,
σmax = 3, a learning rate of 1e−3, K = 1000 samples for computing SK and EK , K = 400
samples for computing SB

K and EB
K , and we clipped SK and SB

K to a max norm of 20. To
stabilize training as we mentioned in the GMM-40 setting, we first identify the smallest and
largest values of the validation set data for each dimension and clip all samples into this range.

For all datasets. We use clipped scores as targets for DEM, DEM-EN, and BDEM-EN
training for all tasks. Meanwhile, we also clip scores during sampling, when calculating the
reverse SDE integral. These settings are shown to be crucial (Akhound-Sadegh et al., 2024)
especially when the energy landscape is non-smooth and exists extremely large energies
or scores, like LJ-13 and LJ-55. While we’re learning unadjusted energy for EnDEM and
BEnDEM, the training can be unstable and therefore we employ sample clipping on top of
the setting of DEM. Due to the limited schedule of this thesis, we provide results of GMM-40
and DW-4 in the main context while leaving the description and early-stage results of LJ-13
and LJ-55 in Appendix G. Also, we’re exploring a more stable training strategy for EnDEM
and BEnDEM, without the non-trivial sample clipping trick, and will leave the results in our
paper in the future.

5.5 Variance and Bias of MC estimators: a 2D GMM case
study

To justify the theoretical results for the variance of the MC energy estimator (3.3) and MC
score estimator (2.61), we first empirically explore a 2D GMM, which has 10 modes located
in [−1,1]2 and with the following density:

p′GMM(x) =
1
10

10

∑
i=1
N
(

x; µi,
1

40
I
)

(5.16)
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(a) Ground truth energy across t ∈ [0,1]

(b) Expected variance of estimators (c) Point-wise variance for t ∈ [0.9,1]

Fig. 5.1 (a) the ground truth energy of the target GMM from t = 0 to t = 1; (b) the estimation
of expected variance of x from t = 0 to t = 1, computed by a weighted sum over the variance
of estimator at each location with weights equal to the marginal density pt ; (c) the variance of
MC score estimator and MC energy estimator, and their difference (Var(score)-Var(energy))
for t from 0.9 to 1, we ignore the plots from t = 0 to t < 0.9 since the variance of both
estimators are small. The colormap ranges from blue (low) to red (high), where blues are
negative while reds are positive.

while the marginal perturbed distribution at t can be analytically derived following Gaussian’s
property:

pt(x) = (p′GMM ∗N (0,σ2
t )(xt) =

1
10

10

∑
i=1
N
(

x; µi,

(
1

40
+σ

2
t

)
I
)

(5.17)

given a VE noising process.
We empirically estimate the variance for each pair of (xt , t) by simulating 10 times the

MC estimators. Besides, we estimate the expected variance over x for each time t, i.e.
Ept(xt)[Var(EK(xt , t))] and Ept(xt)[Var(SK(xt , t))].

Figure 5.1a shows that, the variance of both MC energy estimator and MC score estimator
increase as time increases. While the variance of EK can be smaller than that of SK in most
areas, especially when the energies are low (see Figure 5.1c). And Figure 5.1b shows that in
expectation over true data distribution, the variance of EK is always smaller than that of SK

across t ∈ [0,1].
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(a) EnDEM (b) BEnDEM (c) DEM-En (d) BDEM-En (e) iDEM

Fig. 5.2 Contour lines for the ground truth density of GMM-40 (5.4). Colored points, i.e. •,
represent samples from each model.

(a) EnDEM (b) BEnDEM (c) DEM-En (d) BDEM-En (e) iDEM

Fig. 5.3 Top: histograms of the interatomic distance of drawn samples and test data (i.e.
ground-truth samples). Bottom: histograms of energy of drawn samples and test data.

5.6 Main results

Figure 5.2 shows the contour of ground-truth GMM-40 density as well as samples drawn by
each sampler. It shows that samples generated from iDEM can be deviated into gaps between
modes, while the ones generated from EnDEM can be much more concentrated on all modes
with few samples located in relatively high-energy regions. Furthermore, BEnDEM can
slightly improve the performance by reducing the number of samples corresponding to high
energy. However, the ablation models, DEM-En and BEnDEM-En, are difficult to train and
result in more high-energy samples.

To demonstrate sample quality for higher dimensional data, e.g. DW-4, we visualize
the histograms of interatomic distance and energy for samples drawn from each model
and the ground-truth ones respectively, which are shown in Figure 5.3. These histograms
demonstrate that DEM, EnDEM, and BEnDEM can generate samples that match the ground
truth histograms well, while BDEM-En can be as difficult to train as GMM-40.

To quantitatively compare our models with the ablation ones and baseline one, we
compare a suit of metrics provided in Table 5.1, including negative log-likelihood (NLL),
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Table 5.1 Sampler performance for negative log-likelihood (NLL ↓), Effective Sample Size
(ESS ↑), 2-Wasserstein metrics (W2 ↓), Toval Variation (TV ↓), and log partition function
(logZ ↑).

Energy→ GMM-40 (d = 2) DW-4 (d = 8)

Algorithm ↓ NLL ESS W2 TV logZ NLL ESS W2 TV logZ

iDEM† 6.96 0.73∗ 7.42 0.82 -0.34 7.17 0.825 2.13 0.10 29.567
iDEM (rerun) 6.50 0.27 5.28 0.87 -0.36 18.82 0.368 1.88 0.09 41.235
EnDEM 6.87 0.33 4.08 0.82 -0.02 18.68 0.379 1.92 0.10 41.448
BEnDEM 6.94 0.36 3.84 0.80 0.16 18.61 0.392 1.88 0.10 41.027
DEM-En 6.13 0.29 7.62 0.82 -0.69 19.09 0.376 1.88 0.09 41.598
BDEM-En 6.22 0.23 6.47 0.83 -0.63 19.09 0.376 2.04 0.20 41.598

Effective Sample Size (ESS), 2-Wasserstein metrics (W2), Toval Variation (TV), and log
partition function (logZ). However, even though we used exactly the same codes provided by
Akhound-Sadegh et al. (2024), we were not able to reproduce similar results they provided.
Therefore, we first report the mean of metrics given by Akhound-Sadegh et al. (2024),
denoted as iDEM†. Then we rerun their repository1 and report the metrics for iDEM, denoted
as iDEM (rerun). We notice that all metrics are slightly different from 10% or even more,
especially ESS andW2. For fairness, we present our comparison using the rerun iDEM.

Table 5.1 shows that EnDEM can outperform iDEM in most metrics, showing the potential
of learning the less noisy energy estimator instead of the score estimator. Furthermore,
BEnDEM can further improve performance and achieve the best results in most metrics,
indicating that the energy model can fit low-level noise-convolved energy well and results in
bootstrap energy estimator being able to provide more useful training signals by utilizing
those learned energies. For ablation study, we notice that the performance of DEM-En and
BDEM-En is not as well as the energy-based ones, i.e. EnDEM and BEnDEM, possibly as a
consequence of the instability of training.

Table 5.2 illustrates the training time of each model in hours. It shows that by targeting
the MC energy estimator, EnDEM can achieve faster convergence rate than iDEM, i.e. 0.53
hours v.s. 0.87 hours for GMM-40 and 1.85 hours v.s. 3.07 hours for DW-4, even though
it requires additional differentiation of the neural network when simulating the amortized
sampler. Though BEnDEM can be slower than EnDEM in our case, as it requires evaluating
K = 400 times of neural network to compute the energy at bootstrapped time s and evaluating
the system energy E is faster, it serves the same fast convergance-rate as EnDEM and results
in faster convergence compared with iDEM, i.e. 0.60 v.s. 0.87 for GMM-40 and 2.83 v.s.

1https://github.com/jarridrb/DEM

https://github.com/jarridrb/DEM
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3.07 for DW-4. It’s noticeable that in higher-dimensional and more complex tasks, evaluating
the system energy can be much slower than evaluating a neural network, which means
that BEnDEM can be faster than EnDEM in training while being capable to achieve better
performance. However, the ablation models, DEM-En and BDEM-En, can be slow, as they
require differentiating the neural network as well as the system energy function (i.e. ∇E)
during training, while the instability also leads to difficulty in convergence.

Dataset ↓ Algorithm→ EnDEM BEnDEM DEM-En BDEM-En iDEM (rerun)

GMM-40 (d = 2) 0.53 0.60 0.58 0.45 0.87
DW-4 (d = 8) 1.85 2.83 2.22 4.08 3.07

Table 5.2 Training time (↓) results in hours excluding evaluation time.

5.7 Summary

In this chapter, we introduce the datasets, metrics, and settings for model evaluation. The
experiment results show that, by learning a less noisy target, EnDEM can perform better
than iDEM, while achieving faster convergence rate in training. Furthermore, BEnDEM
can further boost performance of EnDEM, achieving the best results among all models in
most metrics. Also, we notice that the ablation model, BDEM-En, is not only working worse
on most metrics but is also limited to scaling up to higher dimensional datasets, revealing
the necessity of targeting the energy directly when using a bootstrap estimator for variance
reduction.



Chapter 6

Conclusions

In this thesis, we propose EnDEM and BEnDEM. The former one is a novel method for
sampling from Boltzmann-type distribution by learning annealed (time-convolved) energies
and leveraging diffusion models for efficient data generation. Compared previous DEM pro-
posed by Akhound-Sadegh et al. (2024), which inspires our work, EnDEM is targeting a less
variance estimator and achieves better performance. Though EnDEM requires differentiating
the neural network to compute scores, while DEM only requires forward passes, the learned
annealed energies allow us to further improve sampler performance. One way is to enhance
the learning objective via bootstrapping energy estimation on top of EnDEM, leading to our
second method BEnDEM. By using the well-learned energies at low noise levels to reduce
the variance of estimators at higher noise levels, BEnDEM can be better than EnDEM and
has the potential to outperform EnDEM and DEM more in more complex tasks. Above all,
learning the annealed energies instead of scores brings a lot of advantages for sampling from
a Boltzmann-type distribution, which, we believe, is a valuable direction for a better neural
Boltzmann sampler.

6.1 Limitation

The first limitation of our work is the more expensive time of sampling, compared with
DEM (Akhound-Sadegh et al., 2024), which requires differentiating the energy network, i.e.
∇Eθ (x, t). It can be very expensive when the dimensionality of data increases, like LJ-55 or
even more complex tasks. A possible remedy is via distillation, which reduces the number of
neural network evaluations from thousands to few or even one (Salimans and Ho, 2022; Yin
et al., 2024). However, the distillation-based method can only speed up the sampling process
after training. While the inner-loop in EnDEM training can be still expensive.
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Another limitation is the difficulty of learning from sharp energy landscapes. In high
dimensional cases, both the energies and scores can be very sharp with extreme values in
some regions, resulting in instability of model training. A solution for DEM is clipping
the MC score estimators, leading to learning a smoothed energy landscape. For EnDEM
and BEnDEM, however, we target the annealed energies and thus cannot simply clip the
energy estimators (otherwise it leads to 0 scores). One solution can be to smooth the energy
landscape explicitly, e.g. Ẽ(x) = E(x)/(1+E(x))α .

6.2 Future work

Our future work includes addressing the aforementioned limitations as well as further utilizing
the learned energies for higher sample quality.
Efficient EnDEM sampling. The main bottleneck of EnDEM sampling is the differentiation
over neural networks. A potential way to solve it is to align the nature of our Boltzmann-type
target as well as Tweedie’s formula (2.50). In such a way, the scores at (x, t) can be estimated
by evaluating the energy network at data points around x, which is shown in Appendix E.
Due to the limited schedule of this thesis, we leave its experiments as future work.

On the other hand, we can speed up the sampling phase by using finite steps, e.g. 10.
Diffusion Recovery Likelihood (DRL; Gao et al. (2021)) provides us a possible way to do
that, which learns the annealed energies at discrete times and sample data at t−1 from t by
simulating a Langevin Dynamics.
Learning a sharp energy landscape. When the dimensionality of data is high and their
modes are separate, the energy landscape can be very sharp. Rather than explicitly smooth
energy, a potential way is using contrastive loss (Khosla et al., 2020), which implicitly learns
from a smoothed energy landscape (Du et al., 2024; Kim and Ye, 2022). Another way can be
combing a Fourier neural network framework, which factorizes the energy landscapes into
different frequency domains (Tancik et al., 2020; Wang et al., 2023).
Exploration-exploitation trade-off: combing denoising score matching. The framework
of both DEM and EnDEM can be viewed as a reinforcement learning algorithm, which starts
from learning targets at initial guess (samples from prior) and iteratively refines the energies
or scores by learning from what it generates. A potential improvement can be dynamically
combining a DSM target during training, which encourages more exploitation. When the
neural sampler starts to generate reasonable samples and the buffer stores samples from the
target distribution, we can combine a DSM loss into the training target, which utilizes the
information of scores given by the buffer.
EnDEM+MCMC sampling. The advantage of learning annealed energies is not limited to
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training targets with smaller variance. Furthermore, EnDEM allows us to evaluate these time-
convolved energies efficiently, providing a possibility of embedding a Metropolis-Hastings
step in the reverse-SDE integration which resembles a neural Metropolis-Adjusted Langevin
Algorithm (MALA), see Appendix F.
Scaling up to larger datasets. DEM, EnDEM, and Bootstrap EnDEM are valuable methods
for sampling from a Boltzmann-type distribution as they avoid computationally expensive
methods like MD and MCMC by leveraging diffusion sampling. The nature of these methods
allows them to scale up to high-dimensional data for more complex datasets than GMM,
DW-4, and LJ-n. Therefore, scaling these methods to higher dimensional ones is of interest
in the future.
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Appendix A

Supplementary maths

A.1 Optimization of neural network

Suppose we are training a neural network fθ (x) to target noisy observations y(x) = f (x)+
ε(x) using a l2 loss, where x ∈ Rd and ε(x) = [ε1(x), ...,εd(x)]T is a random function with
0 mean (i.e. Eε(x) = 0,∀x). Then the optimal network f ∗

θ
is obtained by minimizing

L(θ) := E∥ fθ (x)− y(x)∥2
2:

f ∗θ = argmin
fθ

E∥ fθ (x)− y(x)∥2
2 (A.1)

= argmin
fθ

E
[
∥ fθ (x)− f (x)∥2−2ε

T (x)( fθ (x)− f (x))+∥ε(x)∥2] (A.2)

= argmin
fθ

E∥ fθ (x)− f (x)∥2 +E∥ε(x)∥2 (A.3)

= argmin
fθ

E∥ fθ (x)− f (x)∥2 (A.4)

= f (A.5)

the optimal fθ is f , resulting to the optimal loss:

L(θ ∗) = E∥ fθ∗(x)− y(x)∥2
2 (A.6)

= E∥ε(x)∥2
2 (A.7)

= Ex

[
d

∑
i=1

Var(εi(x))

]
:=

d

∑
i=1

σ
2
i (A.8)

where σ2
i is the expected variance of the ith element of ε(x) over x, i.e. σ2

i = Ex[Var(εi(x))].
Therefore, given a powerful optimizer and sufficient data, a perfect neural network can
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minimize the expected loss to a minimum, which is the sum of the element-wise expected
variance of the noise.

A.2 Basic Concentration Inequalities

A.2.1 Sub-Gaussian and its concentration

A random variable X is sub-Gaussian, if there exists a constant c > 0 such that:

E[eλX ]≤ e
λ2c2

2 , ∀λ ∈ R (A.9)

Given a sub-Gaussian random variable, X, with mean m and variance v, it has the following
concentration inequality:

P(|X−m| ≥ ε)≤ 2e−
ε2
2v (A.10)

Then, with probability 1−δ , we have:

|X−m| ≤
√

2v log
2
δ
=C

√
log

2
δ

(A.11)

where C =
√

2v.

A.2.2 Bounded random variable and its concentration

If a random variable X is bounded by M > 0, i.e. |X | ≤M, then we have E[eλX ]≤ eλM and
E[eλX ]≤ e−λM, which is equivalent to:

E[eλX ]≤ e|λM| = e
λ2M2

2 , ∀λ ∈ R (A.12)

Thus, a bounded r.v. X is sub-Gaussian.
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Proofs in EnDEM and BEnDEM

B.1 Probability Error Bound for MC Score Estimator

B.1.1 For MC Score Estimator

Let ZK(xt , t) := 1
K ∑

K
i=1 z(i)0t (xt), z(i)0t (xt) = exp(−E0(x

(i)
0|t)). And

m0t(xt) = E[z0t(xt)] = exp(−Et(xt)) (B.1)

v0t(xt) = Var(z0t(xt)) (B.2)

Assume that z0t(xt) is sub-Gaussian. Then ZK is sub-Gaussian with E[ZK(xt , t)] = m0t(xt)

and Var(ZK(xt , t)) =
v0t(xt)

K . Thus, we have the following concentration for Z:

P(|ZK(xt , t)−EZK(xt , t)| ≥ ε)≤ 2e
− ε2

2v0t (xt )/K (B.3)

we thus can show the constant C in Akhound-Sadegh et al. (2024) is C =
√

2v0t(xt), and
their c(xt) is therefor:

c(xt) =
2
√

2v0t(xt)
log(2/δ )
log(1/δ )(1+∥∇Et(xt)∥)

m0t(xt)
√

K
(B.4)
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B.2 Properties of MC Energy Estimator

B.2.1 logarithm of sub-Gaussian r.v. and its concentration inequality

Now, let’s consider an estimator logZ, where Z is an unbiased estimator with mean m and
variance v. By second-order Taylor expansion around m = EZ:

logZ ≈ logm+
1
m
(Z−m)− 1

2m2 (Z−m)2 +O(∥Z−m∥2) (B.5)

Under the sub-Gaussian assumption, O(∥Z−m∥2) is negligible. Then,

E logZ ≈ logm− 1
2m2E[(Z−m)2] (B.6)

= logm− v
2m2 (B.7)

Var(logZ)≈ 1
m2 Var(Z)+

1
4m2 Var((Z−m)2) (B.8)

=
v

m2 (B.9)

Let’s consider the concentration of logZ now:

P(| logZ−E logZ| ≥ ε) = P(|Z−m
m
| ≥ ε) (by first-order Taylor expansion) (B.10)

= P(|Z−m| ≥ εm) (B.11)

≤ 2e−
ε2m2

2v (B.12)

thus, with probability 1−δ :

| logZ−E logZ| ≤
√

2
v

m2 log
2
δ

(B.13)

B.2.2 Variance, Bias and Concentration Inequality for MC Energy
Estimator

Our MC energy estimator can be defined as EK(xt , t) = logZK(xt , t), where ZK(xt , t) is an
unbiased estimator with mean m0t(xt) and variance v0t(xt). Substituting relevant terms in
Equations B.7, B.8, and B.13, respective, gives us the bias, variance, and concentration
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inequality for EK as follows:

EEK(xt , t)≈− logm0t(xt)+
v0t(xt)

2m2
0t(xt)K

(B.14)

Var(EK(xt , t))≈
v0t(xt)

m2
0t(xt)K

(B.15)

|EK(xt , t)−E[EK(xt , t)]]| ≤

√
2

v0t(xt)

m2
0t(xt)K

log
2
δ

(B.16)

B.3 Proof of Proposition 3

Proposition 3 (ours) If exp(−E(x(i)0 |t)) is sub-Gaussian, then with probability 1−δ (over
x(i)0|t ∼N (xt ,σ

2
t )) we have

∥EK(xt , t)−Et(xt)∥ ≤

√
2v0t(xt) log 2

δ

m0t(xt)
√

K
(B.17)

□Proof. First consider an estimator logZ defined in B.2.1. Using the triangle inequality and
Z’s concentration inequality (B.13), we can have:

| logZ− logEZ|= | logZ−E logZ +E logZ− logEZ| (B.18)

≤ | logZ−E logZ|+ |E logZ− logEZ| (by triangle inequality) (B.19)

≤
√

2
v

m2 log
2
δ
+ | logm+

v
2m2 − logm| (by B.7 and B.13) (B.20)

=

√
2

v
m2 log

2
δ
+

v
2m2 (B.21)

Now, by substituting Z with ZK(xt , t) and plugging its mean (B.14) and variance (B.15), the
bias of our MC energy estimator, EK(xt , t)−Et(xt), can be expressed by:

|EK(xt , t)−Et(xt)| ≤

√
2

v0t(xt)

m2
0t(xt)K

log
2
δ
+

v0t(xt)

2m2
0t(xt)K

(B.22)

=

√
2v0t(xt) log 2

δ

m0t(xt)
√

K
+O(1/K) (B.23)

□
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B.4 Variance of MC Score Estimator

A MC score estimator is defined as SK(xt , t) :=∇EK(xt , t) =∇ logZK(xt , t), with assumptions
that exp(−E(x)) and ∥∇xt exp(−E(x))∥ are sub-Gaussian where x ∼ N(x;xt ,σ

2
t ) (i.e. x =

xt +σtε , ε ∼ N(0, I)).
MC score estimator as an importance-weighted estimate (Akhound-Sadegh et al., 2024).
Equation 2.61 can be rewritten as:

SK(xt , t) = ∇xt log
1
K

K

∑
i=1

exp(−E(xt +σtε
(i))) (B.24)

=

1
K ∑

K
i=1 ∇exp(−E(x(i)0|t))

1
K ∑

K
i=1 exp(−E(x(i)0|t))

(B.25)

=−
∑

K
i=1 exp(−E(x(i)0|t))∇E(x

(i)
0|t)

∑
K
i=1 exp(−E(x(i)0|t))

(B.26)

=
∑

K
i=1 wi fi

∑
K
i=1 wi

(B.27)

where wi = exp(−E(x(i)0|t)) and fi = −∇E(x(i)0|t). Therefore, SK can be expressed as an es-
timator by self-normalized importance sampling, with (unnormalized) importance weight
wi.

To derive the variance of SK , we break it into two parts: one-dimensional data and
high-dimensional one. For high-dimensional data, we derive the variance of each entry of
SK .

Different from Akhound-Sadegh et al. (2024), we assume that the norm of ∇exp(−E(x))
is bounded by M > 0, i.e. ∥∇exp(−E(x))∥ ≤ M instead of a sub-Gaussian assumption
directly. It is usually the case since we’ll clip the norm of SK to a certain level in practice for
stable training. First notice that ∥∇exp(−E(x))∥ is a bounded random variable. By A.2.2,
∥∇exp(−E(x))∥ is sub-Gaussian which aligns previous assumption by Akhound-Sadegh
et al. (2024). While

|∇exp(−E(x))[i]| ≤
√
|∇exp(−E(x))[i]|2≤

√
∑

i
|∇exp(−E(x))[i]|2 = ∥∇exp(−E(x))∥≤M

(B.28)
, the ith entry of ∇exp(−E(x)) is also bounded by M as well, which means ∇exp(−E(x))[i]
is also sub-Gaussian. And we further assume that the energy function E is positive.
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B.4.1 For R1 data

We first assume x is one-dimensional, i.e. x∈R1. In this case, ∇exp(−E(x)) and |∇exp(−E(x))|
are both sub-Gaussian.
In low-energy regions. exp(−E(x)) is concentrated away from 0 as E(x) is small. Since
exp(−E(x(i)0|t)) are sub-Gaussian, mean of sub-Gaussian random variables, 1

K ∑i exp(−E(x(i)0|t)),
is also sub-Gaussian concentrated on the same mean m0t(xt)> 0. Then, there exists a constant
c such that exp(−E(x(i)0|t))≥ c > 0 and thus:∣∣∣∣∣∣

1
K ∑

K
i=1 ∇exp(−E(x(i)0|t))

1
K ∑

K
i=1 exp(−E(x(i)0|t))

∣∣∣∣∣∣≤
∣∣∣∣∣∣

1
K ∑

K
i=1 ∇exp(−E(x(i)0|t))

c

∣∣∣∣∣∣ (B.29)

And since ∇exp(−E(x(i)0|t)) is sub-Gaussian, then ration B.29 will be sub-Gaussian. On the
other hand, we have the probability error bound of SK (3.11), while this can be related to the
variance of SK when SK is sub-Gaussian:

Var(SK(xt , t)) =
4v0t(xt)(1+∇Et(xt))

2

m2
0t(xt)K

>
v0t(xt)

m2
0t(xt)K

= Var(EK(xt , t)) (B.30)

In high-energy regions. It’s reasonable to assume that a high-energy region always relates
to a steep vector field, i.e. ∥∇E(x)∥2 is large. Therefore, we can assume that exp(−E(x))
and −∇E(x) are positively related in high energy region, i.e. their covariance is positive.
According to Section 9.2 in Owen (2023), the asymptotic variance of a self-normalized
importance sampling estimator is given by:

µ = Eq[ f (X)] (B.31)

µ̃q =
∑

K
i=1 wi fi

∑
K
i=1 wi

(B.32)

Var(µ̃q)≈
1
K
Eq[w(X)]−2Eq[w(X)2( f (X)−µ)2] (B.33)

By substituting µ̃q = SK(xt , t), f (X) = −∇E(X), w(X) = exp(−E(X)), q = N(x;xt ,σ
2
t ),

Eq[w(X)] = m0t(xt) and Eq[w2(X)] = v0t(xt)+m2
0t(xt), as well as using w(X) and f (X) are
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positive related, we have:

Var(SK(xt , t))≥
1
K
Eq[w(X)]−2Eq[w2(X)]Eq[( f (X)−µ)2] (B.34)

=
v0t(xt)+m2

0t(xt)

m2
0t(xt)K

Varq(∇E(x)) (B.35)

>
v0t(xt)

m2
0t(xt)K

= Var(EK(xt , t)) (B.36)

B.4.2 For Rd data

Now we consider higher dimensional data, say d-dimensional. Recap that ∇exp(−E(x))[i]
and ∥∇exp(−E(x))∥ are all sub-Gaussian. We further assume that the elements of SK are
independent, i.e. Cov(SK(xt , t)) is diagonal.
In low-energy regions. We can generalize the previous analysis element-wise and derive
that there exists a constant c such that exp(−E(x(i)0|t))≥ c > 0 and for each element j,∥∥∥∥∥∥

1
K ∑

K
i=1 ∇exp(−E(x(i)0|t))[ j]

1
K ∑

K
i=1 exp(−E(x(i)0|t))

∥∥∥∥∥∥≤
∥∥∥∥∥∥

1
K ∑

K
i=1 ∇exp(−E(x(i)0|t))[ j]

c

∥∥∥∥∥∥≤ M
c

(B.37)

for j = 1, ...,d, are all sub-Gaussian. While Inequality 3.11 can be expressed as:√√√√ d

∑
j=1

(SK(xt , t)[ j]−St(xt)[ j])2 ≤
2
√

2v0t(xt) log( 2
δ
)(1+∥∇Et(xt)∥)

m0t(xt)
√

K
(B.38)

And we can roughly assume an element-wise error bound as follows:

|SK(xt , t)[ j]−St(xt)[ j]| ≤
2
√

2v0t(xt) log( 2
δ
)(1+∥∇Et(xt)∥)

m0t(xt)
√

Kd
(B.39)

which suggests that we can approximate the variance of the jth entry of SK by:

Var(SK(xt , t)[ j]) =
4v0t(xt)(

1+∥∇Et(xt)∥√
d

)2

m2
0t(xt)K

(B.40)
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then

d

∑
j=1

Var(SK(xt , t)[ j]) =
4v0t(xt)(1+∥∇Et(xt)∥)2

m2
0t(xt)K

>
v0t(xt)

m2
0t(xt)K

= Var(EK(xt , t)) (B.41)

In high-energy regions. It’s usually the case that there exists a direction with a large norm
pointing to low energy regions, i.e. ∃ j such that E(x) are positively related to ∇E(x)[ j]. For
such j, we can derive the corresponding variance of SK(xt , t)[ j] similar to Inequality B.34:

Var(SK(xt , t)[ j])≥
1
K
Eq[w(X)]−2Eq[w2(X)]Eq[( f (X)[ j]−µ[ j])2] (B.42)

=
v0t(xt)+m2

0t(xt)

m2
0t(xt)K

Varq(∇E(x)[ j]) (B.43)

>
v0t(xt)

m2
0t(xt)K

= Var(EK(xt , t)) (B.44)

B.4.3 Conclusion

Above all, we can always have:

Var(EK(xt , t))<
d

∑
j=1

Var(SK(xt , t)[ j]) (B.45)

referring to the MC energy estimator has a smaller variance and can provide a more useful
and less noisy training signal. In terms of optimization (see Appendix A.1), one can learn a
perfect energy network Eθ∗ with optimal loss Et,x0,xt [Var(EK(xt , t))], which is smaller than
that of an optimal score network Et,x0,xt [∑

d
j=1 Var(SK(xt , t)[ j])].

B.5 Proof of Proposition 4

Proposition 4 (ours) Let G be the product group SE(3)× Sn ↪→ O(3n) and p0 be a G-
invariant density in Rd . Then the Monte Carlo energy estimator of EK(xt , t) is G-invariant if
the sampling distribution x0|t ∼N (x0|t ;xt ,σ

2
t ) is G-invariant, i.e.,

N (x0|t ;g◦ xt ,σ
2
t ) =N (g−1x0|t ;xt ,σ

2
t ).

□Proof. Since p0 is G-invariant, then E is G-invariant as well. Let g ∈ G acts on x ∈ Rd

where g ◦ x = gx. Since x(i)0|t ∼ N (x0|t ;xt ,σ
2
t ) is equivalent to g ◦ x(i)0|t ∼ N (x0|t ;g ◦ xt ,σ

2
t ).
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Then we have

EK(g◦ xt , t) =− log
1
K

K

∑
i=1

exp(−E(g◦ x(i)0|t)) (B.46)

=− log
1
K

K

∑
i=1

exp(−E(x(i)0|t)) = EK(xt , t) (B.47)

x(i)
(0|t) ∼N (x0|t ;xt ,σ

2
t ) (B.48)

Therefore, EK is invariant to G = SE(3)×Sn. □

B.6 Bias of Bootstrap Energy Estimator

B.6.1 Bootstrap(1) estimator

The Sequential estimator and Bootstrap(1) estimator are defined by:

ESeq
K (xt , t) : =− log

1
K

K

∑
i=1

exp(−EK(x
(i)
s|t ,s)), x(i)s|t ∼N (x;xt ,(σ

2
t −σ

2
s )I) (B.49)

=− log
1

K2

K

∑
i=1

K

∑
j=1

exp(−E(x(i j)
0|t )), x(i j)

0|t ∼N (x;xt ,σ
2
t I) (B.50)

EB(1)
K (xt , t,s;φ) : =− log

1
K

K

∑
i=1

exp(−Eφ (x
(i)
s|t ,s)), x(i)s|t ∼N (x;xt ,(σ

2
t −σ

2
s )I) (B.51)

The mean and variance of a Sequential estimator can be derived by considering it as the MC
estimator with K2 samples:

E[ESeq
K (xt , t)] = Et(xt)+

v0t(xt)

2m2
0t(xt)K2 and Var(ESeq

K (xt , t)) =
v0t(xt)

m2
0t(xt)K2 (B.52)

While an optimal network obtained by targeting the original MC energy estimator 3.3 at s is:

Eφ∗(xs,s) = E[EK(xs,s)] =− logm0s(xs)+
v0s(xs)

2m2
0s(xs)K

(B.53)

Then the optimal Bootstrap(1) estimator can be expressed as:

EB(1)
K (xt , t,s;φ

∗) =− log
1
K

K

∑
i=1

exp

−
− logm0s(x

(i)
s|t )+

v0s(x
(i)
s|t )

2m2
0s(x

(i)
s|t )K

 (B.54)
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Before linking the Bootstrap estimator and the Sequential one, we provide the following
approximation which is useful. Let a, b two random variables and {ai}K

i=1, {bi}K
i=1 are

corresponding samples. Assume that {bi}K
i=1 are close to 0 and concentrated at mb, while

{ai}K
i=1 are concentrated at ma, then

log
1
K

K

∑
i=1

exp(−(ai +bi)) = log
1
K

{
K

∑
i=1

exp(−ai)

[
∑

K
i=1 exp(−(ai +bi))

∑
K
i=1 exp(−ai)

]}
(B.55)

= log
1
K

K

∑
i=1

exp(−ai)+ log
∑

K
i=1 exp(−(ai +bi))

∑
K
i=1 exp(−ai)

(B.56)

≈ log
1
K

K

∑
i=1

exp(−ai)+ log
∑

K
i=1 exp(−ai)(1−bi)

∑
K
i=1 exp(−ai)

(B.57)

= log
1
K

K

∑
i=1

exp(−ai)+ log
(

1− ∑
K
i=1 exp(−ai)bi

∑
K
i=1 exp(−ai)

)
(B.58)

≈ log
1
K

K

∑
i=1

exp(−ai)−
∑

K
i=1 exp(−ai)bi

∑
K
i=1 exp(−ai)

(B.59)

≈ log
1
K

K

∑
i=1

exp(−ai)−mb (B.60)

where Approximation applies a first order Taylor expansion of ex ≈ 1+ x around x = 0
since {bi}K

i=1 are close to 0; while Approximation uses log(1+ x) ≈ x under the same

assumption. Notice that when K is large and σ2
t −σ2

s is small1, {
v0s(x

(i)
s|t )

2m2
0s(x

(i)
s|t )K
}K

i=1 are close to

0 and concentrated at v0s(xt)

2m2
0s(xt)K

. Therefore, by plugging them into Equation B.60, Equation
B.54 can be approximated by

EB(1)
K (xt , t,s;φ

∗)≈− log
1
K

K

∑
i=1

m0s(x
(i)
s|t )+

v0s(xt)

2m2
0s(xt)K

(B.61)

When K is large and σ2
s is small, the bias and variance of EK(x

(i)
s|t ,s) are small, then we have

− log
1
K

K

∑
i=1

m0s(x
(i)
s|t )≈− log

1
K

K

∑
i=1

EK(x
(i)
s|t ,s) = ESeq

K (xt , t) (B.62)

1It is often the case since we have an hyperparameter β to control that σ2
t −σ2

s ≤ β∀t ∈ [tn, tn+1],s∈ [tn−1, tn].
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Therefore, the optimal Bootstrap estimator can be approximated as follows:

EB(1)
K (xt , t,s;φ

∗)≈ ESeq
K (xt , t)+

v0s(xt)

2m2
0s(xt)K

(B.63)

where its mean and variance depend on those of the Sequential estimator (B.52):

E[EB(1)
K (xt , t,s;φ

∗)] = Et(xt)+
v0t(xt)

2m2
0t(xt)K2 +

v0s(xt)

2m2
0s(xt)K

(B.64)

Var(EB(1)
K (xt , t,s;φ

∗)) =
v0t(xt)

m2
0t(xt)K2 (B.65)

B.6.2 Bootstrap(n) estimator

Definition 2 Given time splits 0 = t0 < t1 < ...tn+1 < 1 and Eθ : Rd × [0,1]→ R. Given
n ∈ 1, ...,N, for ∀(xt , t,s) ∈ R× [tn, tn+1]× [tn−1, tn] , a Bootstrap(n) estimator is defined as:

EB(n)
K (xt , t,s;θ) : =− log

1
K

K

∑
i=1

exp(−Eθ (x
(i)
s|t ,s)) (B.66)

where x(i)s|t ∼N (x;xt ,(σ
2
t −σ2

s )I) and with initial condition

EB(0)
K (xt , t,s;θ) : = EK(xt , t),∀θ ∈Θ,∀s ∈ R (B.67)

Proposition 5 Given time splits 0 = t0 < t1 < ... < tN = 1, n ∈ {0, ...,N} and a neural
network Eθ . For any fixed trajectory {si}n

i=0 with si ∈ [ti−1, ti] and s0 = 0, if Eθ is optimal
for any u≤ tn by sequentially optimising

θ
(i) = argmin

θ
∥Eθ (xu,u)−EB(i)

K (xu,u,si;θ
(i−1))∥2 (B.68)

for ∀i ∈ {0, ...,n−1} and ∀u ∈ [ti, ti+1], then for ∀(xt , t) ∈Rd× [tn, tn+1], the neural network
optimized by targeting EB(n)

K (xt , t,sn;θ (n−1)) has the optimal value:

E
θ (n)(xt , t) = Et(xt)+

n+1

∑
j=1

v0,s j(xt)

2m2
0,s j

(xt)K j (B.69)
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where sn+1 = t. Especially, when n = 0 it resembles the optimal values by targeting the MC
energy estimator (3.3), i.e.

E
θ (0)(xt , t) = Et(xt)+

v0t(xt)

2m2
0t(xt)K

(B.70)

□Proof. The proof of Proposition 5 is by induction.
Let the energy network be optimal for t ≤ tn by learning a sequence of Bootstrap(i)

energy estimators (i ≤ n− 1). Then for any s ∈ [tn−1, tn], the optimal value of Eθ (xs,s) is
given by E[EB(n−1)

K (xs,s)]. We are going to show the variance of a Bootstrap(n) estimator by
induction. Suppose we have:

E
θ (n−1)(xs,s) = Es(xs)+

n

∑
j=1

v0,s j(xs)

2m2
0,s j

(xs)K j (B.71)

where {si}n
i=0 is a fixed trajectory for each si ∈ [ti−1, ti], s0 = 0 and sn = s. Then for any

t ∈ [tn, tn+1], the learning target of Eθ (xt , t) is bootstrapped from sn = s,

EB(n)
K (xt , t) =− log

1
K

K

∑
i=1

exp(−E
θ (n−1)(x

(i)
s|t ,s)), x(i)s|t ∼N (x;xt ,(σ

2
t −σ

2
s )I) (B.72)

=− log
1
K

K

∑
i=1

exp

−Es(x
(i)
s|t )−

n

∑
j=1

v0,s j(x
(i)
s|t )

2m2
0,s j

(x(i)s|t )K
j

 (B.73)

Assume that σ2
t −σ2

s is small and K is large, then apply Approximation B.60:

EB(n)
K (xt , t)≈− log

1
K

K

∑
i=1

exp(−Es(x
(i)
s|t ))+

n

∑
j=1

v0,s j(x
(i)
s|t )

2m2
0,s j

(x(i)s|t )K
j

(B.74)

In Bootstrap(n) setting, σ2
s is not small and we can’t approximate Es(x

(i)
s|t ) simply by a MC

estimator EK . However, we can sequentially estimate such energy by bootstrapping through
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the trajectory {si}n
i=1, resembling a Sequential(n+1) estimator which is equivalent to EKn+1 ,

EB(n)
K (xt , t)≈ EKn+1(xt , t)+

n

∑
j=1

v0,s j(x
(i)
s|t )

2m2
0,s j

(x(i)s|t )K
j

(B.75)

E[EB(n)
K (xt , t)]≈ Et(xt)+

v0t(xt)

2m2
0t(xt)Kn+1 +

n

∑
j=1

v0,s j(x
(i)
s|t )

2m2
0,s j

(x(i)s|t )K
j

(B.76)

Var(EB(n)
K (xt , t))≈

v0t(xt)

m2
0t(xt)Kn+1 (B.77)

Therefore, by appending sn+1 = t into the trajectory, the optimal value of the energy network
at (xt , t) can be expressed as:

E
θ (n)(xt , t) = Et(xt)+

n+1

∑
j=1

v0,s j(xt)

2m2
0,s j

(xt)K j (B.78)

□



Appendix C

AIS estimator for Energy and Score

In this section, we provide a fully detailed description of computing the AIS estimators, for
both energy and score. A complete pseudo-code is provided in Algorithm 4, which assumes
the Hamiltonian Monte Carlo simulator H is already given.

Algorithm 4 AIS estimator for Energy and Score

Require: Energy function E(x), Initial proposal q(x) = N(x;xt ,σ
2
t I), Intermediate targets

π̃k, Num. AIS steps L, HMC simulator g(x,π), Num. MC samples K
1: {x(i)0 }K

i=1 ∼ N(x;xt ,σ
2
t I)

2: logwi←−E(x(i)0 )/L
3: for k=1,...,L-1 do
4: x(i)k ← g(x(i)k−1, π̃k) ▷ simulate HMC to generate sample from πk

5: logwi← logwi−E(x(i)k−1)/L
6: end for
7: EAIS(L)

K ←−LogSumExp(logw)+ logK
8: SAIS(L)

K ←−∇xt E
AIS(L)
K

Ensure: EAIS(L)
K , SAIS(L)

K

Notice that the intermediate targets π̃k is given in 3.24, then according to Equation 2.7,
the Hamiltonian for π̃k is defined as:

Hk(x, p) = E (k)(x)+ 1
2

pT M−1 p (C.1)

E (k)(x) : =
k
L
E(x)+ 1

2σ2
t
∥x− xt∥2

2 (C.2)
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where M is a given mass matrix. According to Section 2.2.1, we provide a complete
description of HMC in Algorithm 5. Then the one for targeting π̃k can be obtained by
plugging E (k) as the energy function.

Algorithm 5 Hamiltonian Monte Carlo

Require: Energy function E(x), Initial samples {x(i)}K
i=1, Mass M, Num. steps T , Step size

∆

1: function: H(x, p) = E(x)+ 1
2 pT M−1 p

2: {p(i)}K
i=1 ∼ N(p;0,M)

3: t← 0
4: while t < T do
5: p′← p− ∆

2 ∇E(x)
6: x′← x+∆M−1 p′

7: p′← p− ∆

2 ∇E(x′)
8: α(x′,x)←min(1,exp(H(x, p)−H(x′, p′)))
9: with probability α: x, p← x′, p′ ▷ Metropolis-Hastings

10: t← t +∆

11: end while
Ensure: {x(i)}K

i=1



Appendix D

EnDEM for general SDEs

Diffusion models can be generalized to any SDEs with the following form for t ≥ 0:

dxt = f (xt , t)dt +g(t)dw̃ (D.1)

where dw̃ is a standard Wienner process. Particularly, we consider f (x, t) :=−α(t)x, i.e.

dxt =−α(t)xtdt +g(t)dw̃ (D.2)

Then the marginal of the above SDE can be analytically derived as:

xt = β (t)x0 +β (t)

√∫ t

0
(g(s)β (s))2dsε (D.3)

β (t) = e−
∫ t

0 α(s)ds (D.4)

where ε ∼ N (0, I). For example, when g(t) =
√

β̄ (t) and α(t) = 1
2 β̄ (t), where β̄ (t) is a

monotonic function (e.g. linear) increasing from β̄min to β̄max, the above SDE resembles a
Variance Preserving (VP) process (Song et al., 2020b). In DMs, VP can be a favor since
it constrains the magnitude of noisy data across t; while a VE process doesn’t, and the
magnitude of data can explode as the noise explodes. Therefore, we aim to discover whether
any SDEs rather than VE can be better by generalizing EnDEM and DEM to general SDEs.

In this chapter, we provide a solution for general SDEs (D.2) rather than a VE SDE (2.44).
The derivation aligns the idea from Akhound-Sadegh et al. (2024), but we also notice that
there are some typos and misleadings in their equation and we, therefore, repropose with our
notations.

For simplification, we exchangeably use β (t) and βt . Given a SDE as Equation D.2 for
any integrable functions α and g, we can first derive its marginal as Equation D.3, which can
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be expressed as:

β
−1
t xt = x0 +

√∫ t

0
(g(s)β (s))2dsε (D.5)

Therefore, by defining yt = β−1xt we have y0 = x0 and therefore:

yt = y0 +

√∫ t

0
(g(s)β (s))2dsε (D.6)

which resembles a VE SDE with noise schedule σ̃2(t) =
∫ t

0(g(s)β (s))
2ds. In fact, we can

also derive this by changing variables:

dyt = (β−1(t))′xtdt +β
−1(t)dxt (D.7)

= β
−1(t)α(t)xtdt +β

−1(t)(−α(t)xtdt +g(t)dw̃) (D.8)

= β
−1(t)g(t)dw̃ (D.9)

which also leads to Equation D.6. Let p̃t be the marginal distribution of yt and pt the marginal
distribution of xt , similar to Equation 2.58, it can be expressed as:

p̃t(yt) =
∫ exp(−E(y))

Z0
N (yt ;y, σ̃2

t I) (D.10)

≈ 1
Z0

1
K

K

∑
i=1

exp(−E(y(i)0|t)) (D.11)

S̃t(yt) = ∇yt log p̃t(yt)≈ ∇yt log
K

∑
i=1

exp(−E(y(i)0|t)) (D.12)

Ẽt(yt)≈− log
1
K

K

∑
i=1

exp(−E(y(i)0|t)) (D.13)

y(i)0|t ∼N (y;yt , σ̃
2
t I) (D.14)

Therefore, we can learn scores and energies of yt simply by following DEM and EnDEM for
VE SDEs. Then for sampling, we can simulate the reverse SDE of yt and eventually, we have
x0 = y0. And we can use xt as the neural network input for numerical stability, as described
by Akhound-Sadegh et al. (2024).
Instead, we can also learn energies and scores of xt . By changing the variable, we can have

pt(xt) = β
−1
t p̃t(β

−1
t xt) = β

−1
t p̃t(yt) (D.15)

St(xt) = β
−1
t S̃t(β

−1
t xt) = β

−1
t S̃t(yt) (D.16)
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which provides us the energy and score estimator for xt :

Et(xt)≈− logβ
−1
t

1
K

K

∑
i=1

exp(−E(x(i)0|t)) (D.17)

St(xt)≈ β
−1
t ∇xt log

K

∑
i=1

exp(−E(x(i)0|t)) (D.18)

x(i)0|t ∼N (x;β
−1
t xt , σ̃

2(t)I) (D.19)

Typically, α is a non-negative function, resulting in β (t) decreasing from 1 and can be close
to 0 when t is large. Therefore, the above equations realize that even though both the energies
and scores for a general SDE can be estimated, the estimators are not reliable at large t since
β
−1
t can be extremely large; while the SDE of yt (D.9) indicates that this equivalent VE

SDE is scaled by β
−1
t , resulting that the variance of yt at large t can be extremely large and

requires much more MC samples for a reliable estimator.
Besides, as discussed in Section 2.2.4, the MC energy and score estimators are based

on an IS estimator. In this perspective, the native proposal N (y;yt , σ̃
2(t)I) can be far away

from the target which is proportional to exp(−E(y))N (yt ;y, σ̃2(t)I). Therefore, these MC
estimators can be very unreliable, and an AIS estimator discussed in Section 2.2.5 can be
useful. A generalized implementation (w/ or w/o AIS) will be of interest in the future.



Appendix E

Efficient Sampling for EnDEM

There’s an essential issue of EnDEM that it requires additional differentiation over its input,
i.e. ∇Eθ (x, t), during sampling. A possible remedy can be raised by reviewing Tweedie’s
formula (2.50). Due to the limited schedule for this thesis, we only propose the method
below, and leave further experiments as future work and will be potentially shown in ICLR
2025 or other conferences after.

In a VE setting, by Tweedie’s formula:

St(xt) =−
xt−E[x0|xt ]

σ2
t

(E.1)

E[x0|xt ] =
∫

x0 p(x0|xt)dx0 (E.2)

=
∫

x0
p(xt |x0)p(x0)

pt(xt)
dx0 (E.3)

=
∫

x0
N (xt ;x0,σ

2
t I)exp(−E(x0))/Z0

pt(xt)
dx0 (E.4)

=
∫

x0
N (xt ;x0,σ

2
t I)exp(−E(x0))

exp(−Et(xt))
dx0 (E.5)

where pt(xt) = exp(−Et(xt))/Z0. And we’re learning an energy model:

Eθ (x, t)≈ Et(x),∀t ∈ [0,1] (E.6)
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then we can approximate the expectation using the learned network:

E[x0|xt ]≈ Dθ (xt , t) : =
∫

x0
N (xt ;x0,σ

2
t I)exp(−Eθ (x0,0))

exp(−Eθ (xt , t))
dx0 (E.7)

= exp(Eθ (xt , t))EN (x;xt ,σ2
t I)[xexp(−Eθ (x,0))] (E.8)

≈ 1
K

K

∑
i=1

x(i)0|t exp(Eθ (xt , t)−Eθ (x
(i)
0|t ,0)) := DK

θ (xt , t) (E.9)

sθ (xt , t) =−
xt−Dθ (xt , t)

σ2
t

(E.10)

where x(i)0|t ∼ N (x;xt ,σ
2
t I). Especially when σt is small (i.e. for t close to 0), since x(i)0|t =

xt +σtε
(i) with ε(i) ∼N (0, I), we can take a first order Taylor expansion of Eθ around xt

DK
θ (xt , t) =

1
K

K

∑
i=1

x(i)0|t exp(Eθ (xt , t)−Eθ (xt ,0)−σt(ε
(i))T

∇Eθ (xt ,0)) (E.11)

≈ 1
K

K

∑
i=1

x(i)0|t exp(−σt(ε
(i))T

∇Eθ (xt ,0)) (E.12)

≈ 1
K

K

∑
i=1

(xt +σtε
(i))(1−σt(ε

(i))T
∇Eθ (xt ,0)) (E.13)

therefore, when t close to 0, in expectation we will have

E[DK
θ (xt , t)] = xt−σ

2
t ∇Eθ (xt ,0) (E.14)

E[sK
θ (xt , t)] =−∇Eθ (xt ,0) (E.15)

which recovers scores at t = 0. Finally, plugging the new approximated scores into Equation
2.53, we have the following more efficient discretized reverse SDE for EnDEM

xt−1 = Dθ (xt , t)+σtεt (E.16)

≈ DK
θ (xt , t)+σtεt (E.17)

where εt ∼N (0, I).



Appendix F

Incorporating Metropolis-Hastings

Leveraging the learned annealed energies, we’re able to combine MH during sampling to
boost sample quality. At a specific time t and corresponding sample xt , one can simulate the
reverse SDE by discretizing it into a small time step ∆ and generating x′ = xt−∆,

x′t = xt +σ
2
t ∇ log pt(xt)+σtε (F.1)

= xt−σ
2
t ∇Et(xt)+σtε (F.2)

≈ xt−σ
2
t ∇Eθ (xt , t)+σtε (F.3)

where ε ∼N (0, I) and we stick using the VE SDE introduced in Equation 2.44. Therefore, the
above Langevin Dynamics introduces a non-symmetric proposal, qt(x′|x), towards marginal
distribution pt−∆

qt(x′|x) =N (x′;x−σ
2
t ∇Eθ (x, t),σ2

t I) (F.4)

Therefore, one can employ MH to correct samples, with an acceptance rate

αt(x′,x;θ) = min
{

1,
exp(−Eθ (x′, t−∆))N (x;x′−σ2

t ∇Eθ (x′, t),σ2
t I)

exp(−Eθ (x, t−∆)N (x′;x−σ2
t ∇Eθ (x, t),σ2

t I)

}
(F.5)

resembling a neural MALA. By leveraging the aforementioned denoiser Dθ (xt , t), and its
approximation DK

θ
(xt , t), we can further simplify Equation F.5 as

αt(x′,x;θ) = min
{

1,
exp(−Eθ (x′, t−∆))N (x;Dθ (x′, t),σ2

t I)
exp(−Eθ (x, t−∆)N (x′;Dθ (x, t),σ2

t I)

}
(F.6)

≈min
{

1,
exp(−Eθ (x′, t−∆))N (x;DK

θ
(x′, t),σ2

t I)
exp(−Eθ (x, t−∆)N (x′;DK

θ
(x, t),σ2

t I)

}
(F.7)



Appendix G

Supplementary Experiments

Supplementary Experiments Settings

Dataset: LJ-n

This dataset describes a system consist of n particles in 3-dimensional space, resulting in a
task with dimensionality d = 3n. Following Akhound-Sadegh et al. (2024), the energy of the
system is given by ETot(x) = ELJ(x)+ cEosc(x) with the Lennard-Jones potential

ELJ(x) =
ε

2τ
∑
i j

((
rm

di j

)6

−
(

rm

di j

)12
)

(G.1)

and the harmonic potential

Eosc(x) =
1
2 ∑

i
∥xi− xCOM∥2 (G.2)

where di j = ∥xi−x j∥2 are Euclidean distance between two particles, rm, τ and ε are physical
constants, xCOM refers to the center of mass of the system and c the oscillator scale. We use
rm = 1, τ = 1, ε = 1 and c = 0.5 the same as Akhound-Sadegh et al. (2024). We test our
models in LJ-13 and LJ-55, which correspond to d = 65 and d = 165 respectively. And we
use the MCMC samples given by Klein et al. (2023) as a test set.

Hyperparameters for LJ-n

LJ-13. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models
are trained with a geometric noise schedule with σmin = 0.01 and σmax = 2, a learning rate
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of 1e−3, K = 1000 samples for SK and EK , K = 400 samples for EB
K and SB

K , and we clipped
SK and SB

K to a max norm of 20.

LJ-55. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models
are trained with a geometric noise schedule with σmin = 0.5 and σmax = 4, a learning rate of
1e−3, K = 100 samples for SK and EK , K = 400 samples for EB

K and SB
K , and we clipped SK

and SB
K to a max norm of 20.

Supplementary Experiments Results

(a) EnDEM (b) DEM-En

(c) BEnDEM (d) DEM

Fig. G.1 For each subplot, Left: histograms of the interatomic distance of drawn samples
and test data (i.e. ground-truth samples); Right: histograms of energy of drawn samples and
test data.

Figure G.1 shows that EnDEM is diverging possibly as a result of the sharp energy
landscape, while DEM-En is not stable for training as well. Even though BEnDEM helps,
and can match the modes of interatomic distance distribution, it underperforms DEM so far.
Therefore, exploring more stable training of EnDEM as well as BEnDEM for a sharp energy
landscape is our most urgent direction.
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