

BNEM: A Boltzmann Sampler Based On Bootstrapped Noised Energy Matching

NEURAL INFORMATION PROCESSING SYSTEMS

RuiKang OuYang^{*, 1} Bo Qiang^{*, 1, 2} José Miguel Hernández-Lobato¹
*Equal contribution ¹University of Cambridge ²University of Washingtor

TL;DR

We propose *NEM*, a *neural sampler* targets the *noised energy* and enables *diffusion sampling*; We extend NEM to *BNEM*, which self-enhances the learning target via *bootstrapping*.

Motivation

- Sampling from an *unnormalized density*, i.e. *Boltzmann density*, is foundational in science.
- Diffusion sampling enjoys fast mode-mixing
- Standard diffusion model requires large amount of data to learn the marginal scores
- How to train learn the marginal scores without known data but access to the energy?

Related Works

• iDEM [1] regresses an MC score estimator of the with only access to energy $\mathcal{E}(x)$

Methods

NEM

- Marginal density perturbed by VE noising process $p_t(x_t) \propto \int \exp(-\mathcal{E}(x)) \mathcal{N}(x_t; x, \sigma_t^2 I) dx$
- We define the *noised energy* as $\mathcal{E}_t(x_t) \coloneqq -log \int \exp\left(-\mathcal{E}(x)\right) \mathcal{N}(x_t; x, \sigma_t^2 I) dx$
- We approximate it by an MC estimator

$$E_k(x_t, t) = -\log \frac{1}{K} \sum_{i=1}^{K} \exp\left(-\varepsilon \left(x_{0|t}^{(i)}\right)\right)$$

with $x_{0|t}^{(i)} \sim \mathcal{N}(x; x_t, \sigma_t^2 I)$.

· Learning Objective

$$\mathcal{L}_{NEM}(x_t, t) = ||E_{\theta}(x_t, t) - E_k(x_t, t)||^2$$

BNEM

- As t increase, $E_k(x_t,t)$ becomes inaccurate with high variance
- To remedy, we leverage the learned noised energy at lower time level s, i.e. E_s, to estimate energy at t
- We propose the **Bootstrapped energy estimator**

$$\begin{split} E_{k}(x_{t},t,s;\theta) &= -\log\frac{1}{K} \sum_{i=1}^{K} exp\left(-E_{\theta}\left(x_{s|t}^{(i)},s\right)\right) \\ \text{with } x_{s|t}^{(i)} &\sim \mathcal{N}(x;x_{t},(\sigma_{t}^{2}-\sigma_{s}^{2})I). \end{split}$$

· Learning Objective

 $\mathcal{L}_{BNEM}(x_t, t, s) = ||E_{\theta}(x_t, t) - E_k(x_t, t, s; sg(\theta))||^2$ where $sg(\theta)$ refers stopping gradient of θ .

Overview

Results

Table 1: Neural sampler performance comparison for GMM-40 and DW-4 energy function. we measured the performance using data Wasserstein-2 distance $(x-\mathcal{W}_2)$, Energy Wasserstein-2 distance $(\mathcal{E}-\mathcal{W}_2)$, and Total Variation (TV). * indicates divergent training. **Bold** indicates the best values and <u>underline</u> indicates the second best ones.

Energy \rightarrow	GMM-40 $(d=2)$			DW-4 $(d = 8)$		
Sampler \downarrow	$\overline{\mathbf{x} ext{-}\mathcal{W}_2\downarrow}$	$\mathcal{E} extsf{-}\mathcal{W}_2\downarrow$	TV↓	$\overline{\mathbf{x} ext{-}\mathcal{W}_2\!\!\downarrow}$	$\mathcal{E} ext{-}\mathcal{W}_2 \downarrow$	TV↓
DDS	11.69	86.69	0.944	0.701	109.8	0.429
PIS	5.806	76.35	0.940	*	*	*
FAB	3.828	64.23	0.824	0.614	211.5	0.359
iDEM	8.512	562.7	0.909	0.532	2.109	0.161
NEM (ours)	5.192	85.05	0.906	0.489	<u>0.999</u>	<u>0.145</u>
BNEM (ours)	3.652	2.973	0.830	0.467	0.458	0.134

References

[1] Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, and Alexander Tong. Iterated denoising energy matching for sampling from boltzmann densities, 2024.